The Stationary Dirac Equation as a Generalized Pauli Equation for Two Quasiparticles
详细信息    查看全文
  • 作者:Nikolay L. Chuprikov
  • 关键词:Dirac equation ; Klein tunneling ; Dirac sea ; Potential step
  • 刊名:Foundations of Physics
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:45
  • 期:6
  • 页码:644-656
  • 全文大小:428 KB
  • 参考文献:1.Barut, A.O.: Combining relativity and quantum mechanics: Schr?dinger’s interpretation of \(\psi \) . Found. Phys. 18, 95-05 (1988)
    2.Holland, P., Brown, H.R.: The non-relativistic limits of the Maxwell and Dirac equations: the role of Galilean and gauge invariance. Stud. Hist. Philos. Mod. Phys. 34, 161-87 (2003)View Article MATH MathSciNet
    3.Messiah, A.: Quantum Mechanics, vol. 2. North-Holland Publishing Company, Amsterdam (1965)
    4.Hansen, A., Ravndal, F.: Klein’s Paradox and its resolution. Phys. Scr. 23, 1036-042 (1981)View Article ADS
    5.Holstein, B.R.: Klein’s paradox. Am. J. Phys. 66, 507-12 (1998). doi:10.-119/-.-8891 View Article ADS MathSciNet
    6.Calogeracos, A., Dombey, N.: History and physics of the Klein paradox. Contemp. Phys. 40(5), 313-21 (1999)View Article ADS
    7.Bosanac, S.D.: Solution of Dirac equation for a step potential and the Klein paradox. J. Phys. A 40, 8991-001 (2007)View Article ADS MATH MathSciNet
    8.Kononets, Y.V.: Charge conservation, Klein’s paradox and the concept of paulions in the Dirac electron theory. New results for the dirac equation in external fields. Found. Phys. 40, 545-72 (2010). doi:10.-007/?s10701-010-9414-6 View Article ADS MATH MathSciNet
    9.Alhaidari, A.D.: Resolution of the Klein paradox. Phys. Scr. 83, 025001 (4pp) (2011)View Article ADS
    10.Payandeh. F., Pur, T.M., Fathi, M. and Moghaddam, Z.Gh.: A Krein quantization approach to Klein paradox. arXiv:-305.-927v3 [gr-qc]
    11.Gerritsma, R., Kirchmair, G., Zahringer, F., Solano, E., Blatt, R., Roos, C.F.: Quantum simulation of the Dirac equation. Nature 463, 68-1 (2010)View Article ADS
    12.O’Connel, R.F.: Zitterbewegung is not an observable. Mod. Phys. Lett. A 26(7), 469-71 (2011)View Article ADS
    13.Schroedinger, E.: über die kr?ftfreie bewegung in der relativistischen quantenmechanik. Sitz. Preuss. Akad. Wiss. Phys.-Math. Kl. 24, 418 (1930)
    14.Hestenes, D.: Zitterbewegung in quantum mechanics. Found. Phys. 40(1), 1-4 (2010)View Article ADS MATH MathSciNet
    15.Greiner, W.: Relativistic Quantum Mechanics: Wave Equations. Springer, Berlin (1994)
    16.Bjorken, J.D., Drell, S.D.: Relativistic Quantum Mechanics. McGraw-Hill, New York (1964)
    17.Beenakker, W.J.: Colloquium: Andreev reflection and Klein tunneling in graphene. Rev. Mod. Phys. 80, 1337-354 (2008)View Article ADS
    18.Burt, M.G.: The justification for applying the effective-mass approximation to microstructures. J. Phys. Condens. Matter 4, 6651-690 (1992)View Article ADS
    19.Karavaev, G.F., Krivorotov, I.N.: A method of enveloping functions for description of electron states in microstructures with smooth variation of the potential at heterointerfaces. Phys. Tech. Semicond. 30(1), 177-87 (1996)
    20.Dodonov, V.V.: Strict lower bound for the spatial spreading of a relativistic particle. Phys. Lett. A 171, 394-98 (1993)
    21.Unanyan, R.G., Otterbach, J., Fleischhauer, M.: Confinement limit of Dirac particles in scalar one-dimensional potentials. Phys. Rev. A 79, 044101 (2009)View Article ADS
    22.Cheng, J.-Y.: A complete proof of the confinement limit of one-dimensional Dirac particles. Found. Phys. 44, 953-59 (2014)View Article ADS MATH MathSciNet
    23.Zawadzki, W.: One-dimensional semirelativity for electrons in carbon nanotubes. Phys. Rev. B 74, 205439 (1-) (2006)
    24.Cserti, J., Dávid, G.: Unified description of Zitterbewegung for spintronic, graphene, and superconducting systems. Phys. Rev. B 74, 172305(1-) (2006)
    25.Zarenia, M., Chaves, A., Farias, G.A., Peeters, F.M.: Energy levels of triangular and hexagonal graphene quantum dots: a comparative study between the tight-binding and Dirac equation approach. Phys. Rev. B 84, 245403(1-2) (2011)ADS
  • 作者单位:Nikolay L. Chuprikov (1)

    1. Tomsk State Pedagogical University, 634041, Tomsk, Russia
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Physics
    Quantum Physics
    Relativity and Cosmology
    Biophysics and Biomedical Physics
    Mechanics
    Condensed Matter
  • 出版者:Springer Netherlands
  • ISSN:1572-9516
文摘
By analyzing the Dirac equation with static electric and magnetic fields it is shown that Dirac’s theory is nothing but a generalized one-particle quantum theory compatible with the special theory of relativity. This equation describes a quantum dynamics of a single relativistic fermion, and its solution is reduced to solution of the generalized Pauli equation for two quasiparticles which move in the Euclidean space with their effective masses holding information about the Lorentzian symmetry of the four-dimensional space-time. We reveal the correspondence between the Dirac bispinor and Pauli spinor (two-component wave function), and show that all four components of the Dirac bispinor correspond to a fermion (or all of them correspond to its antiparticle). Mixing the particle and antiparticle states is prohibited. On this basis we discuss the paradoxical phenomena of Zitterbewegung and the Klein tunneling.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700