Adaptive responses in resurgent Lake Victoria cichlids over the past 30?years
详细信息    查看全文
  • 作者:Jacco C. van Rijssel (1) (2)
    Frans Witte (1) (2)
  • 关键词:Body shape ; Ecomorphology ; Functional ecology ; Morphological adaptations ; Morphological trade off ; Nile perch predation
  • 刊名:Evolutionary Ecology
  • 出版年:2013
  • 出版时间:March 2013
  • 年:2013
  • 卷:27
  • 期:2
  • 页码:253-267
  • 全文大小:442KB
  • 参考文献:1. Aguirre WE, Bell MA (2012) Twenty years of body shape evolution in a threespine stickleback population adapting to a lake environment. Biol J Linn Soc 105:817-31 CrossRef
    2. Barel CDN, Van Oijen MJP, Witte F, Witte-Maas ELM (1977) Introduction to taxonomy and morphology of haplochromine cichlidae from Lake Victoria—manual to Greenwood’s revision papers. Neth J Zool 27:333-89 CrossRef
    3. Barel CDN, Anker GC, Witte F, Hoogerhoud RJC, Goldschmidt T (1989) Constructional constraint and its ecomorphological implications. Acta Morph Neerl Scan 27:83-09
    4. Bell MA, Aguirre WE, Buck NJ (2004) Twelve years of contemporary armor evolution in a threespine stickleback population. Evolution 58:814-24
    5. Bittner D, Excoffier L, Largiader CR (2010) Patterns of morphological changes and hybridization between sympatric whitefish morphs ( / Coregonus spp.) in a Swiss lake: a role for eutrophication? Mol Ecol 19:2152-167 CrossRef
    6. Blake RW (2004) Fish functional design and swimming performance. J Fish Biol 65:1193-222 CrossRef
    7. Bouton N, Witte F, Van Alphen JJM (2002a) Experimental evidence for adaptive phenotypic plasticity in a rock-dwelling cichlid fish from Lake Victoria. Biol J Linn Soc 77:185-92 CrossRef
    8. Bouton N, De Visser J, Barel CDN (2002b) Correlating head shape with ecological variables in rock-dwelling haplochromines (Teleostei: Cichlidae) from Lake Victoria. Biol J Linn Soc 76:39-8 CrossRef
    9. Carroll AM, Wainwright PC, Huskey SH, Collar DC, Turingan RG (2004) Morphology predicts suction feeding performance in centrarchid fishes. J Exp Biol 207:3873-881 CrossRef
    10. Chapman LJ, Galis F, Shinn J (2000) Phenotypic plasticity and the possible role of genetic assimilation: hypoxia-induced trade-offs in the morphological traits of an African cichlid. Ecol Lett 3:387-93 CrossRef
    11. Clarke CA, Mani GS, Wynne G (1985) Evolution in reverse clean air and the peppered moth. Biol J Linn Soc 26:189-99 CrossRef
    12. Crispo E, Chapman L (2010a) Hypoxia drives plastic divergence in cichlid body shape. Evol Ecol 25:949-64 CrossRef
    13. Crispo E, Chapman L (2010b) Geographic variation in phenotypic plasticity in response to dissolved oxygen in an African cichlid fish. J Evol Biol 23:2091-103 CrossRef
    14. Gingerich PD (1983) Rates of evolution—effects of time and temporal scaling. Science 222:159-61 CrossRef
    15. Gingerich PD (2001) Rates of evolution on the time scale of the evolutionary process. Genetica 112:127-44 CrossRef
    16. Goudswaard KPC, Witte F, Wanink JH (2006) The shrimp / Caridina nilotica in Lake Victoria (East Africa), before and after the Nile perch increase. Hydrobiologia 563:31-4 CrossRef
    17. Goudswaard KPC, Witte F, Katunzi EFB (2008) The invasion of an introduced predator, Nile perch ( / Lates niloticus, L.) in Lake Victoria (East Africa): chronology and causes. Environ Biol Fishes 81:127-39 CrossRef
    18. Grant PR, Grant BR (1995) Predicting microevolutionary responses to directional selection on heritable variation. Evolution 49:241-51 CrossRef
    19. Grant PR, Grant BR (2006) Evolution of character displacement in Darwin’s finches. Science 313:224-26 CrossRef
    20. Grant PR, Grant BR, Markert JA, Keller LF, Petren K (2004) Convergent evolution of Darwin’s finches caused by introgressive hybridization and selection. Evolution 58:1588-599
    21. Guthrie DM, Muntz WRA (1993) Role of vision in fish behavior. In: Pitcher TJ (ed) Behavior of teleost fishes. Chapman & Hall, London, pp 89-28 CrossRef
    22. Hairston NG, Li KT (1982) Fish vision and the detection of planktonic prey. Science 218:1240-242 CrossRef
    23. Hairston NG, Ellner SP, Geber MA, Yoshida T, Fox JA (2005) Rapid evolution and the convergence of ecological and evolutionary time. Ecol Lett 8:1114-127 CrossRef
    24. Hammer ?, Harper DAT, Ryan PD (2001) PAST: paleontological software package for education and data analysis. Palaeontol Electron 4:1-
    25. Hecky RE (1993) The eutrophication of Lake Victoria. Verh Int Ver Theor Angew Limnol 25:39-8
    26. Hecky RE, Bugenyi FWB, Ochumba P, Talling JF, Mugidde R, Gophen M, Kaufman L (1994) Deoxygenation of the deep-water of Lake Victoria, East Africa. Limnol Oceanogr 39:1476-481 CrossRef
    27. Hendry AP, Kinnison MT (1999) Perspective: the pace of modern life: measuring rates of contemporary microevolution. Evolution 53:1637-653 CrossRef
    28. Hendry AP, Kelly ML, Kinnison MT, Reznick DN (2006) Parallel evolution of the sexes? Effects of predation and habitat features on the size and shape of wild guppies. J Evol Biol 19:741-54 CrossRef
    29. Hendry AP, Farrugia TJ, Kinnison MT (2008) Human influences on rates of phenotypic change in wild animal populations. Mol Ecol 17:20-9 CrossRef
    30. Hendry AP, Hudson K, Walker JA, Rasanen K, Chapman LJ (2011) Genetic divergence in morphology-performance mapping between Misty Lake and inlet stickleback. J Evol Biol 24:23-5 CrossRef
    31. Hobson ES (1991) Trophic relationships of fishes specialized to feed on zooplankters above coral reefs. In: Sale PF (ed) The ecology of fishes on coral reefs. Academic Press, San Diego, pp 69-5
    32. Katunzi EFB, Zoutendijk J, Goldschmidt T, Wanink JH, Witte F (2003) Lost zooplanktivorous cichlid from Lake Victoria reappears with a new trade. Ecol Freshw Fish 12:237-40 CrossRef
    33. Kaufman L (1992) Catastrophic change in species-rich freshwater ecosystems. Bioscience 42:846-58 CrossRef
    34. Kayanda R, Taabu AM, Tumwebaze R, Muhoozi L, Jembe T, Mlaponi E, Nzungi P (2009) Status of the major commercial fish stocks and proposed species-specific management plans for Lake Victoria. Afr J Trop Hydrobiol Fish 12:60-6
    35. Kishe-Machumu MA (2012) Inter-guild differences and possible causes of the recovery of cichlid species in Lake Victoria, Tanzania. Dissertation, Leiden University
    36. Kishe-Machumu M, Witte F, Wanink JH (2008) Dietary shift in benthivorous cichlids after the ecological changes in Lake Victoria. Anim Biol 58:401-17 CrossRef
    37. Kitano J, Bolnick DI, Beauchamp DA, Mazur MM, Mori S, Nakano T, Peichel CL (2008) Reverse evolution of armor plates in the threespine stickleback. Curr Biol 18:769-74 CrossRef
    38. Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353-57 CrossRef
    39. Klingenberg CP, Barluenga M, Meyer A (2003) Body shape variation in cichlid fishes of the / Amphilophus citrinellus species complex. Biol J Linn Soc 80:397-08 CrossRef
    40. Langerhans RB (2009) Morphology, performance, fitness: functional insight into a post-Pleistocene radiation of mosquitofish. Biol Lett 5:488-91 CrossRef
    41. Langerhans RB (2010) Predicting evolution with generalized models of divergent selection: a case study with poeciliid fish. Int Comp Biol 50:1167-184 CrossRef
    42. Langerhans RB, Layman CA, Shokrollahi AM, DeWitt TJ (2004) Predator-driven phenotypic diversification in / Gambusia affinis. Evolution 58:2305-318
    43. Langerhans RB, Chapman LJ, Dewitt TJ (2007) Complex phenotype-environment associations revealed in an East African cyprinid. J Evol Biol 20:1171-181 CrossRef
    44. Li KT, Wetterer JK, Hairston NG (1985) Fish size, visual resolution, and prey selectivity. Ecology 66:1729-735 CrossRef
    45. Losos JB, Warheit KI, Schoener TW (1997) Adaptive differentiation following experimental island colonization in Anolis lizards. Nature 387:70-3 CrossRef
    46. Losos JB, Schoener TW, Langerhans RB, Spiller DA (2006) Rapid temporal reversal in predator-driven natural selection. Science 314:1111 CrossRef
    47. Matsuishi T, Muhoozi L, Mkumbo O, Budeba Y, Njiru M, Asila A, Othina A, Cowx IG (2006) Are the exploitation pressures on the Nile perch fisheries resources of Lake Victoria a cause for concern? Fish Man Ecol 13:53-1 CrossRef
    48. Meyer A (1987) Phenotypic plasticity and heterochrony in / Cichlasoma managuense (Pisces, Cichlidae) and their implications for speciation in cichlid fishes. Evolution 41:1357-369
    49. Mitteroecker P, Gunz P (2009) Advances in geometric morphometrics. Evol Biol 36:235-47 CrossRef
    50. Mkumbo OC, Nsinda P, Ezekiel CN, Cowx IG, Aeron M (2007) Towards sustainable exploitation of Nile perch consequential to regulated fisheries in Lake Victoria. Aquat Ecosyst Health Manag 10:449-57 CrossRef
    51. Monteiro LR (1999) Multivariate regression models and geometric morphometrics: the search for causal factors in the analysis of shape. Syst Biol 48:192-99 CrossRef
    52. Mugidde R (1993) The increase in phytoplankton primary productivity and biomass in Lake Victoria (Uganda). Verh Int Ver Theor Angew Limnol 25:846-49
    53. Ogutu-Ohwayo R (1990) The decline of the native fishes of lakes Victoria and Kyoga (East Africa) and the impact of introduced species, especially the Nile perch, / Lates niloticus, and the Nile tilapia, / Oreochromis niloticus. Environ Biol Fishes 27:81-6 CrossRef
    54. Posch M, Futschik A (2008) A uniform improvement of Bonferroni-type tests by sequential tests. J Am Stat Assoc 103:299-08 CrossRef
    55. Pringle RM (2005) The origins of the Nile perch in Lake Victoria. Bioscience 55:780-87 CrossRef
    56. Reznick DN, Ghalambor CK (2001) The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution. Genetica 112:183-98 CrossRef
    57. Reznick DN, Shaw FH, Rodd FH, Shaw RG (1997) Evaluation of the rate of evolution in natural populations of guppies ( / Poecilia reticulata). Science 275:1934-937 CrossRef
    58. Rohlf FJ (1999) Shape statistics: procrustes superimpositions and tangent spaces. J Classif 16:197-23 CrossRef
    59. Rohlf FJ (2001) TPSDig2: a program for landmark development and analysis. See https://life.bio.sunysb.edu/morph/
    60. Rutjes HA, De Zeeuw MP, Van Den Thillart GEEJM, Witte F (2009) Changes in ventral head width, a discriminating shape factor among African cichlids, can be induced by chronic hypoxia. Biol J Linn Soc 98:608-19 CrossRef
    61. Seehausen O, Van Alphen JJM, Witte F (1997) Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277:1808-811 CrossRef
    62. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591-11
    63. Sitoki L, Gichuki J, Ezekiel C, Wanda F, Mkumbo OC, Marshall BE (2010) The environment of Lake Victoria (East Africa): current status and historical changes. Int Rev Hydrobiol 95:209-23 CrossRef
    64. Smits JD, Witte F, Van Veen FG (1996) Functional changes in the anatomy of the pharyngeal jaw apparatus of / Astatoreochromis alluaudi (Pisces, Cichlidae) and their effects on adjacent structures. Biol J Linn Soc 59:389-09
    65. Smits JD, Anker GC, Witte F, Barel KDN (1997) Comparative functional anatomy of the pharyngeal jaw apparatus in two morphs of / Astatoreochromis alluaudi (Pisces, Cichlidae). Neth J Zool 47:313-47 CrossRef
    66. Stauffer JR, Van Snik Gray E (2004) Phenotypic plasticity: its role in trophic radiation and explosive speciation in cichlids (Teleostei: Cichlidae). Anim Biol 54:137-58 CrossRef
    67. Streelman JT, Danley PD (2003) The stages of vertebrate evolutionary radiation. Trends Ecol Evol 18:126-31 CrossRef
    68. Taylor EB, Boughman JW, Groenenboom M, Sniatynski M, Schluter D, Gow JL (2006) Speciation in reverse: morphological and genetic evidence of the collapse of a three-spined stickleback ( / Gasterosteus aculeatus) species pair. Mol Ecol 15:343-55 CrossRef
    69. Teotonio H, Rose MR (2001) Perspective: reverse evolution. Evolution 55:653-60 CrossRef
    70. Terai Y, Seehausen O, Sasaki T, Takahashi K, Mizoiri S, Sugawara T, Sato T, Watanabe M, Konijnendijk N, Mrosso HD, Tachida H, Imai H, Shichida Y, Okada N (2006) Divergent selection on opsins drives incipient speciation in Lake Victoria cichlids. PLoS Biol 4:e433 CrossRef
    71. Van der Meer HJ (1993) Light-induced modulation of retinal development in the cichlid fish / Haplochromis sauvagei (Pfeffer, 1896). Zool J Linn Soc 108:271-85
    72. Van der Meer HJ, Anker GC (1984) Retinal resolving power and sensitivity of the photopic system in 7 haplochromine species (Teleostei, Cichlidae). Neth J Zool 34:197-09 CrossRef
    73. Van der Meer HJ, Van Rijssel JC, Wagenaar LC, Witte F (2012) Photopic adaptations to a changing environment in two Lake Victoria cichlids. Biol J Linn Soc 106:328-41 CrossRef
    74. Van Oijen MJP, Witte F (1996) Taxonomical and ecological description of a species complex of zooplanktivorous and insectivorous cichlids from Lake Victoria. Zool Verh Leiden 302:1-6
    75. Verschuren D, Johnson TC, Kling HJ, Edgington DN, Leavitt PR, Brown ET, Talbot MR, Hecky RE (2002) History and timing of human impact on Lake Victoria, East Africa. Proc R Soc Biol Sci Ser B 269:289-94 CrossRef
    76. Wainwright PC, Bellwood DR (2002) Ecomorphology of feeding in coral reef fishes. In: Sale PF (ed) Coral reef fishes. Dynamics and diversity in a complex ecosystem. Academic Press, San Diego, pp 33-5 CrossRef
    77. Wainwright PC, Richard BA (1995) Predicting patterns of prey use from morphology of fishes. Environ Biol Fish 44:97-13 CrossRef
    78. Wanink JH, Witte F (2000) The use of perturbation as a natural experiment: effects of predator introduction on the community structure of zooplanktivorous fish in Lake Victoria. Adv Ecol Res 31:553-70 CrossRef
    79. Wanink JH, Kashindye JJ, Goudswaard PCK, Witte F (2001) Dwelling at the oxycline: does increased stratification provide a predation refugium for the Lake Victoria sardine / Rastrineobola argentea? Freshw Biol 46:75-5
    80. Werner EE (1974) Fish size, prey size, handling time relation in several sunfishes and some implications. J Fish Res Board Can 31:1531-536
    81. Witte F, Barel CDN, Hoogerhoud RJC (1990) Phenotypic plasticity of anatomical structures and its ecomorphological significance. Neth J Zool 40:278-98 CrossRef
    82. Witte F, Goldschmidt T, Goudswaard PC, Ligtvoet W, Van Oijen MJP, Wanink JH (1992a) Species extinction and concomitant ecological changes in Lake Victoria. Neth J Zool 42:214-32 CrossRef
    83. Witte F, Goldschmidt T, Wanink J, Van Oijen M, Goudswaard K, Witte-Maas E, Bouton N (1992b) The destruction of an endemic species flock—quantitative data on the decline of the haplochromine cichlids of Lake Victoria. Environ Biol Fishes 34:1-8 CrossRef
    84. Witte F, Goldschmidt T, Wanink JH (1995) Dynamics of the haplochromine cichlid fauna and other ecological changes in the Mwanza Gulf of Lake Victoria. In: Pitcher TJ, Hart PJB (eds) The impact of species changes in African Lakes. Chapman and Hall, London, pp 83-10 CrossRef
    85. Witte F, Msuku BS, Wanink JH, Seehausen O, Katunzi EFB, Goudswaard PC, Goldschmidt T (2000) Recovery of cichlid species in Lake Victoria: an examination of factors leading to differential extinction. Rev Fish Biol Fish 10:233-41 CrossRef
    86. Witte F, Wanink JH, Rutjes HA, Van der Meer HJ, Van Den Thillart GEEJM (2005) Eutrophication and its influence on the fish fauna of Lake Victoria. In: Reddy MV (ed) Restoration and management of tropical eutrophic lakes. Science Publishers, Inc., Enfield, pp 301-38
    87. Witte F, Wanink JH, Kishe MA (2007) Species distinction and the biodiversity crisis in Lake Victoria. Trans Am Fish Soc 136:1146-159 CrossRef
    88. Witte F, Welten M, Heemskerk M, van der Stap I, Ham L, Rutjes H, Wanink J (2008) Major morphological changes in a Lake Victoria cichlid fish within two decades. Biol J Linn Soc 94:41-2 CrossRef
    89. Witte F, Seehausen O, Wanink JH, Kishe-Machumu MA, Rensing M, Goldschmidt T (2012) Cichlid species diversity in naturally and anthropogenically turbid habitats of Lake Victoria, East Africa. Aquat Sci. doi:10.1007/s00027-012-0265-4
    90. Wootton RJ (1998) Ecology of teleost fishes. Kluwer, Dordrecht
    91. Zelditch ML, Swiderski DL, Sheets HD, Fink WL (2004) Geometric morphometrics for biologists. Elsevier Academic Press, New York
  • 作者单位:Jacco C. van Rijssel (1) (2)
    Frans Witte (1) (2)

    1. Department of Integrative Zoology, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
    2. Netherlands Centre for Biodiversity “Naturalis- P.O. Box 9517, 2300 RA, Leiden, The Netherlands
  • ISSN:1573-8477
文摘
Textbook examples of adaptive radiation like the Galapagos finches and the East-African cichlids form a subject of major interest in evolutionary biology. Many of these species often show rapid morphological changes in response to a perturbed environment. The dramatic ecological changes in Lake Victoria during the past three decades, e.g. Nile perch predation and eutrophication, provide a unique opportunity to study environmental effects on cichlid morphology. Preliminary research has revealed that the lake’s haplochromines tend to be extremely plastic and sensitive to these environmental changes. So far, long-term ecomorphological studies at short-term intervals are extremely rare. In this study, we examined morphological changes over a 30?year period in six haplochromine species. Geometric morphometric analyses at intervals of approximately 3?years revealed adaptive responses. Three out of four resurgent haplochromines had a smaller head surface/caudal peduncle area (HS/CPA) ratio during the upsurge of the predatory Nile perch. During the same period, all four resurgent species had a larger cheek depth and a smaller eye size. The smaller HS/CPA ratio and larger cheek depth are likely to be adaptive responses to a high predation pressure and a diet shift to larger prey. The smaller eye size seems to be the result of a trade off between the eyes and other morphological structures in the smaller head of these species. Interestingly, the direction of the morphological changes was different between the four resurgent cichlid species and two species that became extremely rare or even may have gone extinct. The HS/CPA ratio increased in the extinct species where it decreased in the resurgent species. This study suggests that predation is a major driver of these morphological changes, which may be due to either phenotypic plasticity or adaptive changes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700