Thermodynamic modeling assisted by multivariate statistical image analysis as a tool for unraveling metamorphic P-T-d evolution: an example from ilmenite-garnet-bearing metapelite of the Peloritan
详细信息    查看全文
  • 作者:Patrizia Fiannacca (1)
    Deborah Lo Pò (2)
    Gaetano Ortolano (1)
    Rosolino Cirrincione (1)
    Antonino Pezzino (1)
  • 刊名:Mineralogy and Petrology
  • 出版年:2012
  • 出版时间:4 - November 2012
  • 年:2012
  • 卷:106
  • 期:3
  • 页码:151-171
  • 全文大小:2377KB
  • 参考文献:1. Angì G, Cirrincione R, Fazio E, Fiannacca P, Ortolano G, Pezzino A (2010) Metamorphic evolution of preserved Hercynian crustal section in the Serre Massif (Calabria-Peloritani Orogen, southern Italy). Lithos 115:237-62 CrossRef
    2. Appel P, Cirrincione R, Fiannacca P, Pezzino A (2011) Age constraints on Late Paleozoic evolution of continental crust from electron microprobe dating of monazite in the Peloritani Mountains (southern Italy): another example of resetting of monazite ages in high-grade rocks. Int J Earth Sci 100:107-23 CrossRef
    3. Atzori P, Sassi FP (1973) The barometric significance of the muscovites from Savoca phyllites (Peloritani, Sicily). With considerations on the baric conditions during Hercynian metamorphism in Italy. Schweiz Miner Petr Mitt 53(2):243-53
    4. Atzori P, Ferla P (1992) The pre-alpine crystalline basement of the Peloritani Mountains (Sicily): acquired knowledge and open questions. IGCP N° 276 Newsletters 5:311-20
    5. Atzori P, Cirrincione R, Del Moro A, Pezzino A (1994) Structural, metamorphic and geochronogical features of the Alpine events in the south-eastern sector of the Peloritani Mountains (Sicily). Per Mineral 63:113-25
    6. Auzanneau E, Schmidt MW, Vielzeuf D, Connolly JAD (2010) Titanium in phengite: a geobarometer for high temperature eclogites. Contrib Mineral Petrol 159:1-4 CrossRef
    7. Caddick MJ, Thompson AB (2008) Quantifying the tectono-metamorphic evolution of pelitic rocks from a wide range of tectonic settings: mineral compositions in equilibrium. Contrib Mineral Petrol 156:177-95 CrossRef
    8. Carr JR (1998) A visual basic program for principal components transformation for digital images. Comput Geosci 24:209-18 CrossRef
    9. Cirrincione R, Pezzino A (1991) Caratteri strutturali dell’evento Alpino nella serie mesozoica di Alì e nell’Unità metamorfica di Mandanici (Peloritani Orientali). Mem Soc Geol It 47:263-72
    10. Cirrincione R, Atzori P, Pezzino A (1999) Sub-greenschist facies assemblages of metabasites in South-Eastern sector of Peloritani range. Mineral Petrol 67:193-12 CrossRef
    11. Cirrincione R, Ortolano G, Pezzino A, Punturo R (2008) Poly-orogenic multi-stage metamorphic evolution inferred via P–T pseudosections: an example from Aspromonte Massif basement rocks (Southern Calabria, Italy). Lithos 103:466-02 CrossRef
    12. Cirrincione R, Fazio E, Ortolano G, Pezzino A, Punturo R (2012) Fault-related rocks as a tool for the comprehension of structural and metamorphic evolution of an accretionary wedge in a collisional belt (Peloritani Mountains, NE Sicily). Int Geol Rev 54:940-56 CrossRef
    13. Coggon R, Holland TJB (2002) Mixing properties of phengitic micas and revised garnet-phengite thermobarometers. J Metam Geol 20:683-96 CrossRef
    14. Connolly JAD (1990) Multivariable phase diagrams: an algorithm based on generalized thermodynamics. Am J Sci 290:666-18 CrossRef
    15. Connolly JAD (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett 236:524-41 CrossRef
    16. Connolly JAD (2009) The geodynamic equation of state: what and how. Geochem Geophys Geosyst 10:Q10014. doi:10.1029/2009GC002540 CrossRef
    17. Connolly JAD, Petrini K (2002) An automated strategy for calculation of phase diagram sections and retrieval of rock properties as a function of physical conditions. J Metam Geol 20:697-08 CrossRef
    18. De Gregorio S, Rotolo SG, Villa IM (2003) Geochronology of the medium to high grade metamorphic units of the Peloritani Mts., Sicily. Int J Earth Sci 92:852-72 CrossRef
    19. De La Roche H (1978) La chimique des roches présentée et interpretée d’aprés la structure de leur faciés mineral dans l’espace des variables chimiques: function spécifiques et diagrammes qui s’en déduisent. Application aux roches ignées. Chem Geol 21:63-7 CrossRef
    20. Dubois R, Truillet R (1971) Le polymétamorphisme et la structure du domain peloritain (Sicile). La notion de socle peloritain antéhercynien. CR Acad Sci Paris 272:2134-136
    21. Evans TP (2004) A method for calculating effective bulk composition modification due to crystal fractionation in garnet-bearing schists: implications for isopleths thermobarometry. J Metam Geol 22:547-57 CrossRef
    22. Ferla P (1972) Serie metamorfiche dei Monti Peloritani occidentali (Messina). Rend Soc Ital Min Petr 28:125-51
    23. Ferla P (2000) A model of continental crustal evolution in the geological history of the Peloritani Mountains (Sicily). Mem Soc Geol It 55:87-3
    24. Ferla P, Meli C (2007) Petrogenesis of tourmaline rocks associated with Fe-carbonate–graphite metapelite, metabasite and strata-bound polymetallic sulphide mineralisation, Peloritani Mountains, Sicily, Southern Italy. Lithos 99:266-88 CrossRef
    25. Fiannacca P, Williams IS, Cirrincione R, Pezzino A (2008) Crustal contributions to Late-Hercynian peraluminous magmatism in the Southern Calabria–Peloritani Orogen, Southern Italy: petrogenetic inferences and the Gondwana connection. J Petrol 49:1497-514 CrossRef
    26. Fiannacca P, Williams IS, Cirrincione R, Pezzino A (2012) The augen gneisses of the Peloritani Mountains (NE Sicily): granitoid magma production during rapid evolution of the northern Gondwana margin at the end of the Precambrian. Gondwana Res. doi:10.1016/j.gr.2012.05.019
    27. Flesche H, Nielsen AA, Larsen R (2000) Supervised mineral classification with semi-automatic training and validation set generation in scanning electron microscope energy dispersive spectroscopy images of thin sections. Math Geol 32:337-66 CrossRef
    28. Franzini M, Leoni L, Saitta M (1972) A simple method to evaluate the matrix effect in x-ray fluorescence analysis. XRay Spectrom 1:151-54 CrossRef
    29. Friel JJ, Lyman CE (2006) X-ray mapping in electron-beam instruments. Microsc Microanal 12:2-5 CrossRef
    30. Gaidies G, Abart R, De Capitani C, Schuster R, Connolly JAD, Reusser E (2006) Characterization of polymetamorphism in the Austroalpine basement east of the Tauern Window using garnet isopleth thermobarometry. J Metam Geol 24:451-75 CrossRef
    31. Groppo C, Castelli D (2010) Prograde P-T evolution of a lawsonite eclogite from the Monviso meta-ophiolite (Western Alps): dehydration and redox reactions during subduction of oceanic FeTi-oxide gabbro. J Petrol 51:2489-514 CrossRef
    32. Herron MM (1988) Geochemical classification of terrigenous sands and shales from core and log data. J Sed Petrol 58:820-29
    33. Hetherington CJ, Le Bayon R (2005) Bulk rock composition: a key to identifying invisible prograde reactions in zoned garnet. Swiss Bull Miner Petrol 85:57-8
    34. Holland TJB, Powell R (1991) A compensated-Redlich-Kwong (CORK) equation for volumes and fugacities of CO2 and H2O in the range 1 bar to 50?kbar and 100-600?°C. Contrib Mineral Petrol 109:265-73 CrossRef
    35. Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metam Geol 16:309-43 CrossRef
    36. Holland TJB, Baker J, Powell R (1998) Mixing properties and activity-composition relationships of chlorites in the system MgO-FeO-Al2O3-SiO2-H2O. Eur J Mineral 10:395-06
    37. Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277-79
    38. Launeau P, Cruden AR, Bouchez J (1994) Mineral recognition in digital images of rocks; a new approach using multichannel classification. Can Mineral 32:919-33
    39. Le Bayon B, Pitra P, Ballevre M, Bohn M (2006) Reconstructing P–T paths during continental collision using multi-stage garnet (Gran Paradiso nappe, Western Alps). J Metam Geol 24:477-96 CrossRef
    40. Lentini F, Catalano S, Carbone S (2000) Carta geologica della Provincia di Messina (Sicilia Nord-Orientale), scala 1:50000, S.El.Ca, Firenze, p 70
    41. Newton RC, Charlu TV, Kleppa OJ (1980) Thermochemistry of the high structural state plagioclases. Geochim Cosmochim Acta 44:933-41 CrossRef
    42. Pezzino A, Pannucci S, Puglisi G, Atzori P, Ioppolo S, Lo Giudice A (1990) Geometry and metamorphic environment of the contact between the Aspromonte—Peloritani Unit (Upper Unit) and Madonna dei Polsi Unit (Lower Unit) in the central Aspromonte area (Calabria). Boll Soc Geol It 109:455-69
    43. Pezzino A, Angì G, Cirrincione R, De Vuono E, Fazio E, Fiannacca P, Lo Giudice A, Ortolano G, Punturo R (2008) Alpine metamorphism in the aspromonte massif: implications for a new framework for the southern sector of the Calabria-Peloritani orogen, Italy. Int Geol Rev 50:423-41 CrossRef
    44. Powell R, Holland TJB (2008) On thermobarometry. J Metam Geol 26:155-79 CrossRef
    45. Puglisi G, Pezzino A (1994) Metamorphism in the central Aspromonte area: geological, mineralogical and petrogenetic relationships. Per Mineral 63:153-68
    46. Raase P, Raith M, Ackermand D, Lal RK (1986) Progressive metamorphism of mafic rocks from greenschist to granulite facies in the Dharwar Craton of South India. J Geol 94:261-82 CrossRef
    47. Richard LR (1995) Minpet mineralogical and petrological data processing system, version 2.02 Minpet Geological Software Quebec, Canada
    48. Russo S, Cutrupia D, Di Bella M, Minutoli C (2006) High pressure metamorphism in southern Calabria, Italy: the Cardeto chlorite–garnet metapelites. Per Mineral 75:23-2
    49. Siivola J, Schmid RA (2007) List of mineral abbreviations. In: Fettes D, Desmons J (eds) Metamorphic rocks—a classification and glossary of terms. Cambridge University Press, Cambridge, pp 93-10
    50. Stüwe K (1997) Effective bulk composition changes due to cooling: a model predicting complexities in retrograde reaction textures. Contrib Mineral Petrol 129:43-2 CrossRef
    51. Taylor SR, Mclennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford, p 312
    52. Will TM (1988) Phase diagrams and their application to determine pressure-temperature paths of metamorphic rocks. Neu Jahrb Miner Abh 174:103-30
    53. Williams IS, Fiannacca P, Cirrincione R, Pezzino A (2012) Peri-Gondwanan origin and early geodynamic history of NE Sicily: a zircon tale from the basement of the Peloritani Mountains. Gondwana Res. doi:10.1016/j.gr.2011.12.007
    54. White RW, Powell R, Holland TJB, Worley BA (2000) The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. J Metam Geol 18:497-11 CrossRef
    55. White RW, Powell R, Holland TJB (2007) Progress relating to calculation of partial melting equilibria for metapelites. J Metam Geol 25:511-27 CrossRef
    56. Zeh A (2001) Inference of a detailed P-T path from P-T pseudosections using metapelitic rocks of variable composition from a single outcrop, Shackleton Range, Antarctica. J Metam Geol 19:329-50 CrossRef
    57. Zuluaga CA, Stowell HH, Tinkham DK (2005) The effect of zoned garnet on metapelite pseudosection topology and calculated metamorphic P-T paths. Am Mineral 90:1619-628 CrossRef
  • 作者单位:Patrizia Fiannacca (1)
    Deborah Lo Pò (2)
    Gaetano Ortolano (1)
    Rosolino Cirrincione (1)
    Antonino Pezzino (1)

    1. Department of Biological, Geological and Environmental Sciences, University of Catania, Corso Italia 57, 95129, Catania, Italy
    2. Department of Earth and Geoenvironmental Sciences, University of Bologna, Piazza di Porta San Donato 1, 40126, Bologna, Italy
  • ISSN:1438-1168
文摘
An ilmenite-garnet-bearing schist from the medium-grade metapelite complex of the Mandanici Unit in the Peloritani Mountains has been investigated to constrain the P-T conditions attained in this sector of the southern European Hercynian chain. Microprobe investigations assisted by statistical handling of X-ray maps via principal component analysis allowed us to better elucidate the porphyroblast-matrix relationships, the geometry of the elemental distribution in garnet porphyroblasts and the average volume percentage of the reactant garnet during retrograde metamorphic evolution. Selected microprobe data were then used to constrain, by means of P-T pseudosections, the main P-T stages of the metamorphic evolution, using the XRF bulk-rock chemistry as the equilibrium chemical composition for the prograde and peak stages and an effective bulk-rock composition for the retrograde one. Peak metamorphic P-T estimates (~530?°C; 0.9?GPa) are consistent with a Hercynian crustal thickening stage at middle-lower crustal conditions, while subsequent evolution, constrained at 420-60?°C; 0.30-.60?GPa, depicts a retrograde clockwise P-T trajectory linked to exhumation under likely extensional shearing conditions. The results obtained in this paper lead to envisage a new scenario for the crustal evolution of the Peloritani Mountains and stimulate a revision of previous interpretations in the light of the new investigation techniques.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700