Boundedness in a three-dimensional chemotaxis–haptotaxis model
详细信息    查看全文
  • 作者:Xinru Cao
  • 关键词:Chemotaxis ; Haptotaxis ; Logistic source ; Boundedness
  • 刊名:Zeitschrift f¨¹r angewandte Mathematik und Physik
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:67
  • 期:1
  • 全文大小:527 KB
  • 参考文献:1.Alikakos N.D.: \({L^p}\) bounds for solutions of reaction–diffusion equations. Comm. Partial Differ. Equ. 4, 827–868 (1979)MathSciNet CrossRef MATH
    2.Bellomo N., Bellouquid A., Tao Y., Winkler M.: Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25, 1663–1763 (2015)MathSciNet CrossRef MATH
    3.Chaplain M., Lolas G.: Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity. Net. Hetero. Med 1, 399–439 (2006)MathSciNet CrossRef MATH
    4.Hieber M., Prüss J.: Heat kernels and maximal \({l^p - l^q}\) estimate for parabolic evolution equations. Commun. Partial Differ. Equ. 22, 1647–1669 (1997)CrossRef MATH
    5.Hillen T., Painter K.J.: A user’s guide to PDE models in a chemotaxis. J. Math. Biol. 58, 183–217 (2009)MathSciNet CrossRef MATH
    6.Horstmann D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences I. Jber. DMV 105(3), 103–165 (2003)MathSciNet MATH
    7.Horstmann D., Winkler M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215, 52–107 (2005)MathSciNet CrossRef MATH
    8.Osaki K., Tsujikawa T., Yagi A., Mimura M.: Exponential attractor for a chemotaxis-growth system of equations. Nonlinear Anal. 51, 119–144 (2002)MathSciNet CrossRef MATH
    9.Keller E.F., Segel L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)CrossRef MATH
    10.Nagai T., Senba T., Yoshida K.: Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis. Funkcial. Ekvacioj 3, 411–433 (1997)MathSciNet MATH
    11.Stinner C., Surulescu C., Winkler M.: Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion. SIAM J. Math. Anal. 46, 1969–2007 (2014)MathSciNet CrossRef MATH
    12.Tao Y.: Global existence for a haptotaxis model of cancer invasion with tissue remodeling. Nonlinear Anal. 12(1), 418–435 (2011)MathSciNet CrossRef MATH
    13.Tao, Y.: Boundedness in a two-dimensional chemotaxis–haptotaxis system. arXiv:​1407.​7382 (2014)
    14.Tao Y., Wang M.: Global solution for a chemotactic–haptotactic model of cancer invasion. Nonlinearity 21, 2221–2238 (2008)MathSciNet CrossRef MATH
    15.Tao Y., Winkler M.: Dominance of chemotaxis in a chemotaxis–haptotaxis model. Nonlinearity 27, 1225–1239 (2014)MathSciNet CrossRef MATH
    16.Tao Y., Winkler M.: Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant. J. Differ. Equ. 257, 784–815 (2014)MathSciNet CrossRef MATH
    17.Tao Y., Winkler M.: Boundedness and stabilization in a multi-dimensional chemotaxis-haptotaxis model. Proc. R. Soc. Edingburgh, Sect. A 144, 1067–1087 (2014)MathSciNet CrossRef MATH
    18.Tello J.I., Winkler M.: A chemotaxis system with logistic source. Commun. Partial Differ. Equ. 32, 849–877 (2007)MathSciNet CrossRef MATH
    19.Winkler M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model. J. Differ. Equ. 248(12), 2889–2905 (2010)MathSciNet CrossRef MATH
    20.Winkler M.: Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source. Commun. Partial Differ. Equ. 35, 1516–1537 (2010)MathSciNet CrossRef MATH
    21.Winkler M.: Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system. J. Math. Pures Appl. 100, 748–767 (2013)MathSciNet CrossRef MATH
  • 作者单位:Xinru Cao (1)

    1. Institute for Mathematical Sciences, Renmin University of China, Beijing, 100872, China
  • 刊物主题:Theoretical and Applied Mechanics; Mathematical Methods in Physics;
  • 出版者:Springer Basel
  • ISSN:1420-9039
文摘
This paper studies the chemotaxis–haptotaxis system $$\left\{\begin{array}{lll} u_t = \Delta u - \chi\nabla \cdot (u\nabla v) - \xi\nabla \cdot (u\nabla w) + \mu u(1 - u - w), &\quad(x, t)\in \Omega \times (0, T),\\ v_t = \Delta v - v + u, &\quad(x, t) \in \Omega \times (0, T),\\ w_t= - vw, &\quad(x, t)\in \Omega \times (0,T)\end{array} \right.\quad\quad(\star)$$under Neumann boundary conditions. Here, \({\Omega \subset {\mathbb{R}}^3}\) is a bounded domain with smooth boundary and the parameters \({\xi,\chi,\mu > 0}\). We prove that for nonnegative and suitably smooth initial data \({(u_0, v_0, w_0)}\), if \({\chi/\mu}\) is sufficiently small, (\({\star}\)) possesses a global classical solution, which is bounded in \({\Omega \times (0, \infty)}\). We underline that the result fully parallels the corresponding parabolic–elliptic–ODE system. Keywords Chemotaxis Haptotaxis Logistic source Boundedness Mathematics Subject Classification 35B35 35B40 35K57 35Q92 92C17 Supported by the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700