Phase boundary between Na–Si clathrates of structures I and II at high pressures and high temperatures
详细信息    查看全文
  • 作者:Z. Jouini ; O. O. Kurakevych ; H. Moutaabbid ; Y. Le Godec…
  • 关键词:silicon clathrates ; superhard clathrates ; phase diagram ; high ; pressure synthesis
  • 刊名:Journal of Superhard Materials
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:38
  • 期:1
  • 页码:66-70
  • 全文大小:623 KB
  • 参考文献:1.Kurakevych, O.O., Superhard phases of simple substances and binary compounds of the B–C–N–O system: from diamond to the latest results (a Review), J. Superhard Mater., 2009, vol. 31, no. 3, pp. 139–157.CrossRef
    2.Kurakevych, O.O. and Solozhenko, V.L., High-pressure route to superhard boron-rich solids, High Press. Res., 2011, vol. 31, no. 1, pp. 48–52.CrossRef
    3.McMillan, P.F. Chemistry of materials under extreme high pressure-high temperature conditions, Chem. Comm., 2003, vol. 2003, no. 8, pp. 919–923.CrossRef
    4.Solozhenko, V.L. and Kurakevych, O.O., Chemical interaction in the B–BN system at high pressures and temperatures. Synthesis of novel boron subnitrides, J. Solid State Chem., 2009, vol. 182, no. 6, pp. 1359–1364.CrossRef
    5.Oganov, A.R., Chen, J., Gatti, C., Ma, Y., Ma, Y., Glass, C.W., Liu, Z., Yu, T., Kurakevych, O.O., and Solozhenko, V.L., Ionic high-pressure form of elemental boron, Nature, 2009, vol. 457, no. 7231, pp. 863–867.CrossRef
    6.Strobel, T.A., Kurakevych, O.O., Kim, D.Y., Le Godec, Y., Crichton, W., Guignard, J., Guignot, N., Cody, G.D., and Oganov, A.R., Synthesis of β-Mg2C3: A monoclinic high-pressure polymorph of magnesium sesquicarbide, Inorg. Chem., 2014, vol. 53, no. 13, pp. 7020–7027.CrossRef
    7.Kurakevych, O.O., Strobel, T.A., Kim, D.Y., and Cody, G.D., Synthesis of Mg2C: a magnesium methanide, Angew. Chem. Int. Ed., 2013, vol. 52, no. 34, pp. 8930–8933.CrossRef
    8.Kurakevych, O.O., Le Godec, Y., Strobel, T.A., Kim, D.Y., Crichton, W.A., and Guignard, J., High-pressure and high-temperature stability of antifluorite Mg2C by in situ X-ray diffraction and ab initio calculations, J. Phys. Chem. C, 2014, vol. 118, no. 15, pp. 8128–8133.CrossRef
    9.Solozhenko, V.L., Kurakevych, O.O., Sokolov, P.S., and Baranov, A.N., Kinetics of the wurtzite-to-rock-salt phase transformation in ZnO at high pressure, J. Phys. Chem. A, 2011, vol 115, no. 17, pp. 4354–4358.CrossRef
    10.Turkevich, V.Z., Stratiichuk, D.A., Tonkoshkura, M.A., and Bezhenar, N.P., Thermodynamic calculation of the Al–B system at pressures to 8 GPa, J. Superhard Mater., 2014, vol. 36, no. 6, pp. 437–439.CrossRef
    11.Turkevich, V.Z. and Solozhenko, V.L., Thermodynamic calculation of the B–C system at pressures to 24 GPa, Ibid., 2014, vol. 36, no. 5, pp. 358–360.
    12.Solozhenko, V.L., Kurakevych, O.O., Turkevich, V.Z., and Turkevich, D.V., Phase diagram of the B–BN System at 5 GPa, J. Phys.Chem. B, 2010, vol. 114, no. 17, pp. 5819–5822.CrossRef
    13.Solozhenko, V.L. and Kurakevych, O.O., Equilibrium p-T phase diagram of boron: experimental study and thermodynamic analysis, Sci. Rep., 2013, vol. 3, art. 2351.CrossRef
    14.Kurakevych, O.O. and Solozhenko, V.L., Thermoelastic equation of state of boron suboxide B6O up to 6 GPa and 2700 K: Simplified Anderson–Grüneisen model and thermodynamic consistency, J. Superhard Mater., 2014, vol. 36, no. 4, pp. 270–278.CrossRef
    15.Le Godec, Y., Mezouar, M., Kurakevych, O.O., Munsch, P., Nwagwu, U., Edgar, J.H., and Solozhenko, V.L., Equation of state of single-crystal cubic boron phosphide, Ibid., 2014, vol. 36, no. 1, pp. 61–64.
    16.Solozhenko, V.L., Kurakevych, O.O., Andrault, D., Le Godec, Y., and Mezouar, M., Ultimate metastable solubility of boron in diamond: Synthesis of superhard diamond-like BC5, Phys. Rev. Lett., 2009, vol. 102, no. 6, art. 015506.CrossRef
    17.Solozhenko, V.L., Kurakevych, O.O., and Le Godec, Y., Creation of nanostuctures by extreme conditions: high-pressure synthesis of ultrahard nanocrystalline cubic boron nitride, Adv. Mater., 2012, vol. 24, no. 12, pp. 1540–1544.CrossRef
    18.Yamanaka, S., Silicon clathrates and carbon analogs: high pressure synthesis, structure, and superconductivity, Dalton Trans., 2010, vol. 39, no. 8, pp. 1901–1915.CrossRef
    19.Yamanaka, S., Enishi, E., Fukuoka, H., and Yasukawa, M., High-pressure synthesis of a new silicon clathrate superconductor, Ba8Si46, Inorg. Chem., 2000, vol. 39, no. 1, pp. 56–58.CrossRef
    20.Baranov, A.N., Kurakevych, O.O., Tafeenko, V.A., Sokolov, P.S., Panin, G.N., and Solozhenko, V.L., High pressure synthesis and luminescent properties of cubic ZnO/MgO nanocomposites, J. Appl. Phys., 2010, vol. 107, no. 7, art. 073519.CrossRef
    21.Baranov, A.N., Sokolov, P.S., Kurakevych, O.O., Tafeenko, V.A., Trots, D., and Solozhenko, V.L., Synthesis of rock-salt MeO–ZnO solid solutions (Me = Ni2+, Co2+, Fe2+, Mn2+) at high pressure and high temperature, High Press. Res., 2008, vol. 28, no. 4, pp. 515–519.CrossRef
    22.Kasper, J.S., Hagenmul, P., Pouchard, M., and Cros, C., Clathrate structure of silicon and NaxSi136 (X=11), Science, 1965, vol. 150, no. 3704, pp. 1713–1714.CrossRef
    23.Kurakevych, O.O., Strobel, T.A., Kim, D.Y., Muramatsu, T., and Struzhkin, V.V., Na–Si clathrates are high-pressure phases: A melt-based route to control stoichiometry and properties, Cryst. Grow. Des., 2013, vol. 13, no. 1, pp. 303–307.CrossRef
    24.Kim, D.Y., Stefanoski, S., Kurakevych, O.O., and Strobel, T.A., Synthesis of an openframework allotrope of silicon, Nat. Mater., 2015, vol. 14, no. 2, pp. 169–173.CrossRef
    25.Solozhenko, V.L., Kurakevych, O.O., Le Godec, Y., and Brazhkin, V.V., Thermodynamically consistent p-T phase diagram of boron oxide B2O3 by in situ probing and thermodynamic analysis, J. Phys. Chem. C, 2015, vol. 119, no. 35, pp. 20600–20605.CrossRef
    26.Hu, J.Z. and Spain, I.L., Phases of silicon at high pressure, Solid State Comm., 1984, vol. 51, no. 5, pp. 263–266.CrossRef
    27.Kubo, A., Wang, Y., Runge, C.E., Uchida, T., Kiefer, B., Nishiyama, N., and Duffy, T.S., Melting curve of silicon to 15 GPa determined by two-dimensional angle-dispersive diffraction using a Kawai-type apparatus with X-ray transparent sintered diamond anvils, J. Phys. Chem. Solids, 2008, vol. 69, no. 9, pp. 2255–2260.CrossRef
    28.Yamanaka, S., Komatsu, M., Tanaka, M., Sawa, H., and Inumaru, K., High-pressure synthesis and structural characterization of the type II clathrate compound Na30.5Si136 encapsulating two sodium atoms in the same silicon polyhedral cages, J. Amer. Chem. Soc., 2014, vol. 136, no. 21, pp. 7717–7725.CrossRef
  • 作者单位:Z. Jouini (1) (2)
    O. O. Kurakevych (1)
    H. Moutaabbid (1)
    Y. Le Godec (1)
    M. Mezouar (3)
    N. Guignot (4)

    1. IMPMC, UPMC Sorbonne Universités, CNRS, MNHN, IRD, Paris, France
    2. LACReSNE, Faculté des Sciences de Bizerte, Zarzouna, Tunisia
    3. European Synchrotron Radiation Facility, Grenoble, France
    4. Synchrotron SOLEIL, Gif-sur-Yvette, France
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Physical Chemistry
    Russian Library of Science
  • 出版者:Allerton Press, Inc. distributed exclusively by Springer Science+Business Media LLC
  • ISSN:1934-9408
文摘
Understanding of the covalent clathrate formation is a crucial point for the design of new superhard materials with intrinsic coupling of superhardness and metallic conductivity. It has been found that silicon clathrates have the archetype structures, which can serve an existent model compounds for superhard clathrate frameworks Si–B, Si–C, B–C and C with intercalated atoms (e.g., alkali metals or even halogens) that can assure the metallic properties. Here we report our in situ and ex situ studies of high-pressure formation and stability of clathrates Na8Si46 (structure I) and Na24+x Si136 (structure II). Experiments have been performed using standard Paris–Edinburgh cells (opposite anvils) up to 6 GPa and 1500 K. We have established that chemical interactions in the Na–Si system and transition between two structures of clathrates occur at temperatures below silicon melting. The strong sensitivity of crystallization products to the sodium concentration has been observed. A tentative diagram of clathrate transformations has been proposed. At least up to ~6 GPa, Na24+x Si136 (structure II) is stable at lower temperatures as compared to Na8Si46 (structure I).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700