A first-principles lattice dynamical study of type-I, type-II, and type-VIII silicon clathrates
详细信息    查看全文
  • 作者:Payam Norouzzadeh ; Charles W. Myles
  • 刊名:Journal of Materials Science
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:51
  • 期:9
  • 页码:4538-4548
  • 全文大小:3,511 KB
  • 参考文献:1.Slack GA (1995) In: Rowe DM (ed) CRC Handbook of Thermoelectrics. CRC, Boca Raton
    2.Härkönen VJ, Karttunen AJ (2014) Ab initio lattice dynamical studies of silicon clathrate frameworks and their negative thermal expansion. Phys Rev B 89:024305CrossRef
    3.Ashcroft NW, Mermin ND (1976) Solid State Physics. HRW International Editions, CBS Publishing Asia Ltd., Philadelphia
    4.Fujiwara A, Sugimoto K, Shih CH, Tanaka H, Tang J, Tanabe Y, Xu J, Heguri S, Tanigaki K, Takata M (2012) Quantitative relation between structure and thermal conductivity in type-I clathrates X8Ga16Ge30 (X = Sr, Ba) based on electrostatic-potential analysis. Phys Rev B 85:144305CrossRef
    5.Suekuni K, Takasu Y, Hasegawa T, Ogita N, Udagawa M, Avila MA, Takabatake T (2010) Off-center rattling modes and glasslike thermal conductivity in the type-I clathrate Ba8Ga16Sn30. Phys Rev B 81:205207CrossRef
    6.Zheng X, Rodriguez SY, Ross JH Jr (2011) NMR relaxation and rattling phonons in type-I Ba8Ga16Sn30 clathrate. Phys Rev B 84:024303CrossRef
    7.Sales BC, Chakoumakos BC, Jin R, Thompson JR, Mandrus D (2001) Structural, magnetic, thermal, and transport properties of X8Ga16Ge30 (X = Eu, Sr, Ba) single crystals. Phys Rev B 63:245113CrossRef
    8.Suekuni K, Avila MA, Umeo K, Fukuoka H, Yamanaka S, Nakagawa T, Takabatake T (2008) Simultaneous structure and carrier tuning of dimorphic clathrate Ba8Ga16Sn30. Phys Rev B 77:235119CrossRef
    9.Slack GA (1979) In: Ehrenreich H, Seitz F, Turnbull D (eds) Solid State Physics, vol 34. Academic Press, New York, p 1
    10.Nolas GS, Slack GA, Schujman SB (2001) In: Tritt TM (ed) Semiconductors and Semimetals. Academic Press, San Diego
    11.Beekman M, Nolas GS (2008) Inorganic clathrate-II materials of group 14: synthetic routes and physical properties. J Mater Chem 18:842CrossRef
    12.Martin J, Erickson S, Nolas GS, Alboni P, Tritt TM, Yang J (2006) Structural and transport properties of Ba8Ga16Si x Ge30−x clathrates. J Appl Phys 99:044903CrossRef
    13.Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys 21:395502
    14.Perdew JP, Burke K, Ernzerhof M (1996) Generalized Gradient Approximation Made Simple. Phys Rev Lett 77:3865CrossRef
    15.Troullier N, Martins JL (1990) A Straightforward Method for Generating Soft Transferable Pseudopotentials. Solid State Commun 74:613CrossRef
    16.Kleinman L, Bylander DM (1982) Efficacious Form for Model Pseudopotentials. Phys Rev Lett 48:1425CrossRef
    17.Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188CrossRef
    18.Baroni S, Resta R (1986) Ab initio calculation of the macroscopic dielectric constant in silicon. Phys Rev B 33:7017CrossRef
    19.Baroni S, Giannozzi P, Testa A (1861) Green’s-function approach to linear response in solids. Phys Rev Lett 1987:58
    20.Alfe D (2009) PHON: a program to calculate phonons using the small displacement method. Comput Phys Commun 180:2622CrossRef
    21.Methfessel M, Paxton AT (1989) High-precision sampling for Brillouin-zone integration in metals. Phys Rev B 40:3616CrossRef
    22.Tang X, Dong J, Hutchins P, Shebanova O, Gryko J, Barnes P, Cockcroft JK, Vickers M, McMillan PF (2006) Thermal properties of Si136: theoretical and experimental study of the type-II clathrate polymorph of Si. Phys Rev B 74:014109CrossRef
    23.Fultz B (2010) Vibrational thermodynamics of materials. Prog Mater Sci 55:247CrossRef
    24.Gurevich VL, Parshin DA, Schober HR (2003) Anharmonicity, vibrational instability, and the Boson peak in glasses. Phys Rev B 67:094203CrossRef
    25.Broido DA, Ward A, Mingo N (2005) Lattice thermal conductivity of silicon from empirical interatomic potentials. Phys Rev B 72:014308CrossRef
    26.Narasimhan S, de Gironcoli S (2002) Ab initio calculation of the thermal properties of Cu: performance of the LDA and GGA. Phys Rev B 65:064302CrossRef
    27.Smith TF, Birch JA, Collins JG (1976) Low-temperature heat capacity, thermal expansion and Gruneisen parameters for SnTe. J Phys C 9(24):4375CrossRef
    28.Julian CL (1965) Theory of Heat Conduction in Rare-Gas Crystals. Phys Rev 137:A128CrossRef
    29.Connétable D (2010) First-principles calculations of carbon clathrates: Comparison to silicon and germanium clathrates. Phys Rev B 82(7):075209CrossRef
    30.Moriguchi K, Munetoh S, Shintani A, Motooka T (2001) Empirical potential description of energetics and thermodynamic properties in expanded-volume silicon clathrates. Phys Rev B 64(19):195409CrossRef
    31.Saito S, Oshiyama A (1995) Electronic structure of Si 46 and Na 2 Ba 6 Si 46. Phys Rev B 51(4):2628CrossRef
    32.Giannozzi P, de Gironcoli S, Pavone P, Baroni S (1991) Ab initio calculation of phonon dispersions in semiconductors. Phys Rev B 43:7231CrossRef
    33.Maradudin AA, Montroll EW, Weiss GH, Ipatva IP (1971) Theory of lattice dynamics in the harmonic approximation, 2nd edn. Academic press, New York
    34.Nolas GS, Beekman M, Gryko J, Lamberton GA, Tritt TM, McMillan PF (2003) Thermal conductivity of elemental crystalline silicon clathrate Si136. Appl Phys Lett 82:6CrossRef
    35.Wu J, Xu J, Prananto D, Shimotani H, Tanabe Y, Heguri S, Tanigaki K (2014) Systematic studies on anharmonicity of rattling phonons in type-I clathrates by low-temperature heat capacity measurements. Phys Rev B 89:214301CrossRef
    36.Norouzzadeh P, Myles CW, Vashaee D (2013) Prediction of a large number of electron pockets near the band edges in type-VIII clathrate Si46 and its physical properties from first principles. J Phys 25(47):475502
    37.Norouzzadeh P, Myles CW, Vashaee D (2014) Prediction of Giant Thermoelectric Power Factor in Type-VIII Clathrate Si46. Sci Rep 4:7028CrossRef
    38.Norouzzadeh P, Krasinski JS, Myles CW, Vashaee D (2015) Type-VIII Si based clathrates: prospects for a giant thermoelectric power factor. Phys Chem Chem Phys 17(14):8850–8859CrossRef
  • 作者单位:Payam Norouzzadeh (1)
    Charles W. Myles (2)

    1. School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, 74106, Tulsa, OK, USA
    2. Department of Physics, Texas Tech University, Lubbock, TX, 79409-1051, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
文摘
The pristine crystalline type-I, type-II, and type-VIII silicon clathrates have been studied using state of the art first-principles calculations based on density functional theory and density functional perturbation theory. We apply quasi-harmonic approximation to study structural stability, the possibility of temperature or pressure-driven phase transitions, along with Grüneisen parameters, coefficients of thermal expansion and thermal conductivities to estimate the degree of phonon anharmonicity for selected silicon clathrates. It is shown that a pressure-driven phase transition between type-I and type-II silicon clathrates may occur, and a temperature-driven phase transition between type-I and type-VIII Si clathrates at high temperature is likely. We further show that the relatively high Grüneisen parameters (1.5, 1.65, and 1.29, respectively for Si46-I, Si136-II, Si46-VIII), the existence of negative regions in the thermal expansion coefficient curves and very low thermal conductivities all indicate that the phonon anharmonicity in these silicon clathrates is high.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700