Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in a broad germplasm collection of melon (Cucumis melo L.)
详细信息    查看全文
  • 作者:Carmen Leida (1)
    Claudio Moser (1)
    Cristina Esteras (2)
    Ronan Sulpice (3) (4)
    John E Lunn (3)
    Frank de Langen (5)
    Antonio J Monforte (6)
    Belen Pic贸 (2)

    1. Research and Innovation Center
    ; Department Genomics and Biology of Fruit Crops ; Fondazione Edmund Mach (FEM) ; Via E. Mach 1 ; 38010 ; San Michele ; Italy
    2. Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV)
    ; Universitat Polit猫cnica de Valencia ; Camino de Vera s/n ; 46022 ; Valencia ; Spain
    3. Max-Planck-Institute of Molecular Plant Physiology
    ; Wissenschaftspark Golm ; Am M眉hlenberg 1 ; 14476 ; Potsdam ; Germany
    4. Plant Systems Biology Research Laboratory
    ; Department of Botany and Plant Science ; Plant and AgriBiosciences Research Centre ; National University of Galway ; University Road ; Galway ; Ireland
    5. HMCLAUSE (Business Unit of Limagrain)
    ; Station de Mas Saint Pierre ; La Galine ; 13210 ; Saint-R茅my-de-Provence ; France
    6. Instituto de Biolog铆a Molecular y Celular de Plantas (IBMCP)
    ; Universitat Polit猫cnica de Val猫ncia (UPV)-Consejo Superior de Investigaciones Cient铆ficas (CSIC) ; Ciudad Polit茅cnica de la Innovaci贸n (CPI) ; Ed. 8E ; C/Ingeniero Fausto Elio s/n ; 46022 ; Valencia ; Spain
  • 关键词:Melon ; Climacteric ripening ; Sugar ; Germplasm collection
  • 刊名:BMC Genetics
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:16
  • 期:1
  • 全文大小:1,529 KB
  • 参考文献:1. Sebastian, P, Schaefer, H, Telford, IRH, Renner, SS (2010) Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. Proc Natl Acad Sci U S A 107: pp. 14269-73 CrossRef
    2. Jeffrey, C (1980) A review of the Cucurbitaceae. Bot J Linn Soc 81: pp. 233-247 CrossRef
    3. Pitrat, M Melon (Cucumis melo L.). In: Prohens, J, Nuez, F eds. (2008) Handb Crop breeding, vol I Veg. Springer, New York, USA, pp. 283-315
    4. Esteras, C, Formisano, G, Roig, C, D铆az, A, Blanca, J, Garcia-Mas, J (2013) SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium. Theor Appl Genet 126: pp. 1285-303 CrossRef
    5. Dhillon, NPS, Ranjana, R, Singh, K, Eduardo, I, Monforte, AJ, Pitrat, M (2006) Diversity among landraces of Indian snapmelon (Cucumis melo var. momordica). Genet Resour Crop Evol 54: pp. 1267-1283 CrossRef
    6. Dhillon, NPS, Singh, J, Fergany, M, Monforte, AJ, Sureja, AK (2009) Phenotypic and molecular diversity among landraces of snapmelon (Cucumis melo var. momordica) adapted to the hot and humid tropics of eastern India. Plant Genet Resour 7: pp. 291-300 CrossRef
    7. Mavlyanova, R, Rustamov, A, Khakimov, R, Khakimov, A, Turdieva, M, Padulosi, S (2005) O'zbekiston Qovunlari [Melons of Uzbekistan]. Rome, IPGRI
    8. Stepansky, A, Kovalski, I (2000) Intraspecific classifcation of melons (Cucumis melo L .) in view of their phenotypic and molecular variation. Plant Syst Evol 217: pp. 313-332 CrossRef
    9. Burger, Y, Sa鈥檃r, U, Paris, HS, Lewinsohn, E, Katzir, N, Tadmor, Y (2006) Genetic variability for valuable fruit quality traits in Cucumis melo. Isr J Plant Sci 54: pp. 233-242 CrossRef
    10. Fern谩ndez-Trujillo, JP, Pic贸, B, Garcia-Mas, J, 脕lvarez, JM, Monforte, AJ, Fernandez-Trujillo, JP, Pic贸, B, Garc铆a-Mas, J, Alvarez, JM Breeding for fruit quality in melon. In: Jenks, M-A, Bebeli, PJ eds. (2011) Breed fruit Qual. Winley-Bla. John Wiley & Sons, Inc, Hoboken, NJ, USA, pp. 261-278 CrossRef
    11. Diaz, A, Fergany, M, Formisano, G, Ziarsolo, P, Blanca, J, Fei, Z (2011) A consensus linkage map for molecular markers and Quantitative Trait Loci associated with economically important traits in melon (Cucumis melo L.). BMC Plant Biol 11: pp. 111-151 CrossRef
    12. Dai, N, Cohen, S, Portnoy, V, Tzuri, G, Harel-Beja, R, Pompan-Lotan, M (2011) Metabolism of soluble sugars in developing melon fruit: a global transcriptional view of the metabolic transition to sucrose accumulation. Plant Mol Biol 76: pp. 1-18 CrossRef
    13. Ariizumi, T, Higuchi, K, Arakaki, S, Sano, T, Asamizu, E, Ezura, H (2011) Genetic suppression analysis in novel vacuolar processing enzymes reveals their roles in controlling sugar accumulation in tomato fruits. J Exp Bot 62: pp. 2773-2786 CrossRef
    14. Moreno, E, Obando, JM, Dos-Santos, N, Fernandez-Trujillo, JP, Monforte, AJ, Garcia-Mas, J (2008) Candidate genes and {QTLs} for fruit ripening and softening in melon. Theor Appl Genet 116: pp. 589-602 CrossRef
    15. Deleu, W, Esteras, C, Roig, C, Gonz谩lez-To, M, Fern谩ndez-Silva, I, Gonzalez-Ibeas, D (2009) A set of EST-SNPs for map saturation and cultivar identification in melon. BMC Plant Biol 9: pp. 90-99 CrossRef
    16. Harel-Beja, R, Tzuri, G, Portnoy, V, Lotan-Pompan, M, Lev, S, Cohen, S (2010) A genetic map of melon highly enriched with fruit quality QTLs and EST markers, including sugar and carotenoid metabolism genes. Theor Appl Genet 121: pp. 511-533 CrossRef
    17. Perin, C, Gomez-jimenez, M, Hagen, L, Dogimont, C, Pech, J, Pitrat, M (2002) Molecular and Genetic Characterization of a Non- Climacteric Phenotype in Melon Reveals Two Loci Conferring Altered Ethylene Response in Fruit 1. Plant Physiol 129: pp. 300-309 CrossRef
    18. Obando-Ulloa, JM, Moreno, E, Garc铆a-Mas, J, Nicolai, B, Lammertyn, J, Monforte, AJ (2008) Climacteric or non-climacteric behavior in melon fruit: 1. Aroma volatiles. Postharvest Biol Technol 49: pp. 27-37 CrossRef
    19. Zheng, XY, Wolff, DW (2000) Ethylene production, shelf-life and evidence of RFLP polymorphisms linked to ethylene genes in melon (Cucumis melo L.). TAG Theor Appl Genet 101: pp. 613-624 CrossRef
    20. Eduardo, I, Arus, P, Monforte, AJ, Obando, J, Fernandez-Trujillo, JP, Martinez, JA (2007) Estimating the genetic architecture of fruit quality traits in melon using a genomic library of near isogenic lines. J Am Soc Hortic Sci 132: pp. 80-89
    21. Fita, A, Pic贸, B, Monforte, AJ, Nuez, F (2008) Genetics of Root System Architecture Using Near-isogenic Lines of Melon. J Am Soc Hortic Sci 133: pp. 448-458
    22. Obando-Ulloa, JM, Nicolai, B, Lammertyn, J, Bueso, MC, Monforte, AJ, Fern谩ndez-Trujillo, JP (2009) Aroma volatiles associated with the senescence of climacteric or non-climacteric melon fruit. Postharvest Biol Technol 52: pp. 146-155 CrossRef
    23. Vegas, J, Garcia-Mas, J, Monforte, AJ (2013) Interaction between QTLs induces an advance in ethylene biosynthesis during melon fruit ripening. Theor Appl Genet 126: pp. 1531-1544 CrossRef
    24. Pech, JC, Bouzayen, M, Latche, A (2008) Climacteric fruit ripening: Ethylene-dependent and independent regulation of ripening pathways in melon fruit. Plant Sci 175: pp. 114-120 CrossRef
    25. Chervin, C, El-Kereamy, A, Roustan, J-P, Latch茅, A, Lamon, J, Bouzayen, M (2004) Ethylene seems required for the berry development and ripening in grape, a non-climacteric fruit. Plant Sci 167: pp. 1301-1305 CrossRef
    26. Trainotti, L, Pavanello, A, Casadoro, G, Colombo, VG, Padova, I (2005) Different ethylene receptors show an increased expression during the ripening of strawberries: does such an increment imply a role for ethylene in the ripening of these non-climacteric fruits?. J Exp Bot 56: pp. 2037-46 CrossRef
    27. Gao, F, Hao, J, Yao, Y, Wang, X, Hasi, A (2013) Cloning and characterization of ethylene-insensitive 2 (EIN2) gene from Cucumis melo. Russian J Plant Physio 60: pp. 713-719 CrossRef
    28. Kendrick, MD, Chang, C (2008) Ethylene signaling: new levels of complexity and regulation. Curr Opin Plant Biol 11: pp. 479-85 CrossRef
    29. Eriksson, EM, Bovy, A, Manning, K, Harrison, L, Andrews, J, Silva, J, Tucker, GA, Seymour, GB (2004) Effect of the Colorless non-ripening mutation on cell wall biochemistry and gene expression during tomato fruit development and ripening. Plant Physiol 136: pp. 4184-4197 CrossRef
    30. Giovannoni, JJ (2007) Fruit ripening mutants yield insights into ripening control. Curr Opin Plant Biol 10: pp. 283-9 CrossRef
    31. Manning, K, Tor, M, Poole, M, Hong, Y, Thompson, AJ, King, GJ, Giovannoni, JJ, Seymour, GB (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38: pp. 948-952 CrossRef
    32. Lin, Z, Hong, Y, Yin, M, Li, C, Zhang, K, Grierson, D (2008) A tomato HD-Zip homeobox protein, LeHB-1, plays an important role in floral organogenesis and ripening. Plant J 55: pp. 301-10 CrossRef
    33. Yoshida, H, Nagata, M, Saito, K, Wang, KLC, Ecker, JR (2005) Arabidopsis ETO1 specifically interacts with and negatively regulates type 2 1-aminocyclopropane-1-carboxylate synthases. BMC Plant Biol 5: pp. 14 CrossRef
    34. Lincoln, JE, Cordes, S, Read, E, Fischer, RL (1987) Regulation of gene expression by ethylene during Lycopersicon esculentum (tomato ) fruit development. Proc Natl Acad Sci 84: pp. 2793-2797 CrossRef
    35. Deikman, J, Xu, R, Kneissl, ML, Ciardi, JA, Kim, KN, Pelah, D (1998) Separation of cis elements responsive to ethylene, fruit development, and ripening in the 5鈥?flanking region of the ripening-related E8 gene. Plant Mol Biol 37: pp. 1001-11 CrossRef
    36. Klee, HJ, Giovannoni, JJ (2011) Genetics and control of tomato fruit ripening and quality attributes. Annu Rev Genet 45: pp. 41-59 CrossRef
    37. Fujisawa, M, Nakano, T, Shima, Y, Ito, Y (2013) A Large-Scale Identification of Direct Targets of the Tomato MADS Box Transcription Factor RIPENING INHIBITOR Reveals the Regulation of Fruit Ripening. Plant Cell 25: pp. 371-386 CrossRef
    38. Mascarell-Creus, A, Ca帽izares, J, Vilarrasa-Blasi, J, Mora-Garc铆a, S, Blanca, J, Gonzalez-Ibeas, D, Saladi茅, M, Roig, C, Deleu, W, Pic贸-Silvent, B, L贸pez-Bigas, N, Aranda, MA, Garcia-Mas, J, Nuez, F, Puigdom猫nech, P, Ca帽o-Delgado, AI (2009) An oligo-based microarray offers novel transcriptomic approaches for the analysis of pathogen resistance and fruit quality traits in melon (Cucumis melo L.). BMC Genomics 10: pp. 467 CrossRef
    39. Esteras C, Lunn J, Sulpice R, Blanca J, Garcia-Mas J, Pitrat M et al. Phenotyping a highly diverse core melon collection to be screened using Ecotilling. Plant Genomics Eur Meet (Plant Gem), Lisbon (Portugal), 7鈥?0 Oct 2009 2009:214.
    40. Gonz谩lez, M, Xu, M, Esteras, C, Roig, C, Monforte, AJ, Troadec, C, Pujol, M, Nuez, F, Bendahmane, A, Garcia-Mas, J, Pic贸, B (2011) Towards a TILLING platform for functional genomics in Piel de Sapo melons. BMC Res Notes 4: pp. 289 CrossRef
    41. Eduardo, I, Ar煤s, P, Monforte, AJ (2005) Development of a genomic library of near isogenic lines (NILs) in melon (Cucumis melo L.) from the exotic accession PI161375. Theor Appl Genet 112: pp. 139-48 CrossRef
    42. Gonzalo, MJ, Claveria, E, Monforte, AJ, Dolcet-sanjuan, R (2011) Parthenogenic Haploids in Melon : Generation and Molecular Characterization of a Doubled Haploid Line Population. J Amer Soc Hort Sci 136: pp. 145-154
    43. Blanca, J, Ca帽izares, J, Ziarsolo, P, Esteras, C, Mir, G, Nuez, F, Garc铆a-Mas, J, Pic贸, B (2011) Melon transcriptome characterization: Simple sequence repeats and Single nucleotide polymorphisms discovery for high throughput genotyping across the species. The Plant Genome 4: pp. 118-131 CrossRef
    44. Blanca, J, Esteras, C, Ziarsolo, P, P茅rez, D, Fernandez-Pedrosa, V, Collado, C, Rodriguez de Pablos, R, Ballester, A, Roig, C, Ca帽izares, J, Pic贸, B (2012) Transcriptome sequencing for SNP discovery across Cucumis melo. BMC Genomics 13: pp. 280 CrossRef
    45. Garcia-Mas, J, Benjak, A, Sanseverino, W, Bourgeois, M, Mir, G, Gonz谩lez, VM, H茅naff, E, C芒mara, F, Cozzuto, L, Lowy, E, Alioto, T, Capella-Guti茅rrez, S, Blanca, J, Ca帽izares, J, Ziarsolo, P, Gonzalez-Ibeas, D, Rodr铆guez-Moreno, L, Droege, M, Du, L, Alvarez-Tejado, M, Lorente-Galdos, B, Mel茅, M, Yang, L, Weng, Y, Navarro, A, Marques-Bonet, T (2012) The genome of melon (Cucumis melo L.). Proc Natl Acad Sci 109: pp. 11872-7 CrossRef
    46. Esteras, C, Nuez, F, Pic贸, B Genetic diversity studies in Cucurbits using molecular tools. In: Behera, T, Wang, Y, Kole, C eds. (2012) Genet Genomics Breed Cucurbits. CRC Press, New Hampshire, pp. 140-198
    47. Monforte, AJ, Oliver, M, Gonzalo, MJ, Alvarez, JM, Dolcet-Sanjuan, R, Ar煤s, P (2004) Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor Appl Genet 108: pp. 750-758 CrossRef
    48. Evanno, G, Regnaut, S, Goudet, J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14: pp. 2611-20 CrossRef
    49. Provvidenti, R (1998) A Source of a High Level of Tolerance to Squash Mosaic Virus in a Melon from China. Cucurbit Genet Coop Rep. 21: pp. 29-30
    50. Yu, X, Wang, X, Zhang, W, Qian, T, Tang, G, Guo, Y, Zheng, C (2008) Antisense suppression of an acid invertase gene (MAI1) in muskmelon alters plant growth and fruit development. J Exp Bot 59: pp. 2969-77 CrossRef
    51. Yoo, S-D, Cho, Y, Sheen, J (2009) Emerging connections in the ethylene signaling network. Trends Plant Sci 14: pp. 270-9 CrossRef
    52. Cara, B, Giovannoni, JJ (2008) Molecular biology of ethylene during tomato fruit development and maturation. Plant Sci 175: pp. 106-113 CrossRef
    53. Devoto, A, Hartmann, H, Piffanelli, P, Elliott, C, Simmons, C, Taramino, G, Goh, G, Cohen, F, Emerson, B, Schulze-Lefert, P, Panstruga, R (2003) Molecular phylogeny and evolution of the plant-specific seven-transmembrane MLO family. J Mol Evol 56: pp. 77-88 CrossRef
    54. Clayberg, CD (1992) Interaction and linkage tests of flesh color genes in Cucumis melo L. Cucurbit Genet Coop Rep 15: pp. 53
    55. Dhillon, N, Monforte, A, Pitrat, M, Pandey, S, Singht, P, Reitsma, KR, Garcia-Mas, J, Sharma, A, McCreight, JD (2012) Melon landraces of India: contributions and importance. Plant Breed Rev 35: pp. 85-150
    56. Tomason, Y, Nimmakayala, P, Levi, A, Reddy, UK (2013) Map-based molecular diversity, linkage disequilibrium and association mapping of fruit traits in melon. Mol Breed 31: pp. 829-841 CrossRef
    57. Esteras C, Pascual L, Saladie M, Dogimont C, Garcia-Mas J, Nuez F et al. Use of Ecotilling to identify natural allelic variants of melon candidate genes involved in fruit ripening. In Plant Genomics Eur Meet (Plant Gem), Lisboa (Portugal), PLANT GEM 7-10 Oct 2009; 2009:213.
    58. Lasserre, E, Bouquin, T, Hernandez, JA, Bull, J, Pech, JC, Balagu茅, C (1996) Structure and expression of three genes encoding ACC oxidase homologs from melon (Cucumis melo L.). Mol Gen Genet 251: pp. 81-90
    59. Chervin, C, Deluc, L (2010) Ethylene signalling receptors and transcription factors over the grape berry development: gene expression profiling. Vitis 49: pp. 129-136
    60. Kieber, JJ, Rothenberg, M, Roman, G, Feldmann, KA, Ecker, JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 72: pp. 427-41 CrossRef
    61. Wang, A, Tan, D, Takahashi, A, Li, TZ, Harada, T (2007) MdERFs, two ethylene-response factors involved in apple fruit ripening. J Exp Bot 58: pp. 3743-3748 CrossRef
    62. Bassett C, Artlip T, Nelson M. Characterization of an ETR homologue from peach (Prunus persica). Plant Biol 1999.
    63. Barry, CS, Mcquinn, RP, Thompson, AJ, Seymour, GB, Grierson, D, Giovannoni, JJ (2005) Ethylene Insensitivity Conferred by the Green-ripe and Never-ripe 2 Ripening Mutants of Tomato 1. Plant Physiol 138: pp. 267-275 CrossRef
    64. Giovannoni, JJ (2004) Genetic Regulation of Fruit Development and Ripening. Plant Cell 16: pp. 170-181 CrossRef
    65. Lanahan, MB (1994) The Never Ripe Mutation Blocks Ethylene Perception in Tomato. Plant Cell 6: pp. 521-530 CrossRef
    66. Wilkinson, J, Lanahan, M, Yen, H, Giovannoni, J, Klee, H (1995) An ethylene-inducible component of signal transduction encoded by NEVER-RIPE. Science 270: pp. 1807-1809 CrossRef
    67. Yang, YW, Wu, Y, Pirrello, J, Regad, F, Bouzayen, M, Deng, W, Li, ZG (2010) Silencing Sl-EBF1 and Sl EBF2 expression causes constitutive ethylene response phenotype, accelerate plant senescence and fruit ripening in tomato. J Exp Bot 61: pp. 697-708 CrossRef
    68. Vrebalov, J, Ruezinsky, D, Padmanabhan, V, White, R, Medrano, D, Drake, R, Schuch, W, Giovannoni, J (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (Rin) locus. Science 296: pp. 343-346 CrossRef
    69. Saladi茅, M, Rose, JKC, Cosgrove, DJ, Catal谩, C (2006) Characterization of a new xyloglucan endotransglucosylase/hydrolase (XTH) from ripening tomato fruit and implications for the diverse modes of enzymic action. Plant J 47: pp. 282-95 CrossRef
    70. Ng, PC, Henikoff, S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31: pp. 3812-3814 CrossRef
    71. Doyle, JJDJ (1990) Isolation of plant DNA from fresh tissue. Focus 12: pp. 13-15.74
    72. Stitt, M, Lilley, R, Gerhardt, R, Heldt, H (1989) Determination of metabolite levels in specific cells and subcellular compartments of plant leave. Methods Enzym 174: pp. 518-522 CrossRef
    73. Jombart, T, Ahmed, I (2011) adegenet 1.3鈥?: new tools for the analysis of genome-wide SNP data. Bioinformatics 27: pp. 3070-1 CrossRef
    74. Jombart, T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24: pp. 1403-5 CrossRef
    75. Pritchard, JK, Stephens, M, Donnelly, P (2000) Inference of population structure using multilocus genotype data. Genetics 155: pp. 945-59
    76. Liu, K, Muse, SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21: pp. 2128-2129 CrossRef
    77. Bradbury, PJ, Zhang, Z, Kroon, DE, Casstevens, TM, Ramdoss, Y, Buckler, ES (2007) TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 23: pp. 2633-2635 CrossRef
    78. Breseghello, F, Sorrells, ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172: pp. 1165-77 CrossRef
    79. Peltier J: LOESS Smoothing in Excel. 2009.
  • 刊物主题:Life Sciences, general; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics; Genetics and Population Dynamics;
  • 出版者:BioMed Central
  • ISSN:1471-2156
文摘
Background A collection of 175 melon (Cucumis melo L.) accessions (including wild relatives, feral types, landraces, breeding lines and commercial cultivars) from 50 countries was selected to study the phenotypic variability for ripening behavior and sugar accumulation. The variability of single nucleotide polymorphisms (SNPs) at 53 selected candidate genes involved in sugar accumulation and fruit ripening processes was studied, as well as their association with phenotypic variation of related traits. Results The collection showed a strong genetic structure, defining seven groups plus a number of accessions that could not be associated to any of the groups (admixture), which fitted well with the botanical classification of melon varieties. The variability in candidate genes for ethylene, cell wall and sugar-related traits was high and similar to SNPs located in reference genes. Variability at ripening candidate genes had an important weight on the genetic stratification of melon germplasm, indicating that traditional farmers might have selected for ripening traits during cultivar diversification. A strong relationship was also found between the genetic structure and phenotypic diversity, which could hamper genetic association studies. Accessions belonging to the ameri group are the most appropriate for association analysis given the high phenotypic and molecular diversity within the group, and lack of genetic structure. The most remarkable association was found between sugar content and SNPs in LG III, where a hotspot of sugar content QTLs has previously been defined. By studying the differences in allelic variation of SNPs within horticultural groups with specific phenotypic features, we also detected differential variation in sugar-related candidates located in LGIX and LGX, and in ripening-related candidates located in LGII and X, all in regions with previously mapped QTLs for the corresponding traits. Conclusions In the current study we have found an important variability at both the phenotypic and candidate gene levels for ripening behavior and sugar accumulation in melon fruit. By combination of differences in allelic diversity and association analysis, we have identified several candidate genes that may be involved in the melon phenotypic diversity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700