Prion-mediated neurodegeneration is associated with early impairment of the ubiquitin–proteasome system
详细信息    查看全文
  • 作者:Chris McKinnon ; Rob Goold ; Ralph Andre ; Anny Devoy ; Zaira Ortega…
  • 关键词:Prion ; PrP ; UPS ; Proteasome ; Neurodegeneration
  • 刊名:Acta Neuropathologica
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:131
  • 期:3
  • 页码:411-425
  • 全文大小:6,377 KB
  • 参考文献:1.Ang XL, Seeburg DP, Sheng M, Harper JW (2008) Regulation of postsynaptic RapGAP SPAR by Polo-like kinase 2 and the SCFbeta-TRCP ubiquitin ligase in hippocampal neurons. J Biol Chem 283:29424–29432. doi:10.​1074/​jbc.​M802475200 PubMedCentral CrossRef PubMed
    2.Boellaard JW, Kao M, Schlote W, Diringer H (1991) Neuronal autophagy in experimental scrapie. Acta Neuropathol (Berl) 82:225–228CrossRef
    3.Chan NC, Salazar AM, Pham AH, Sweredoski MJ, Kolawa NJ, Graham RLJ, Hess S, Chan DC (2011) Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum Mol Genet 20:1726–1737. doi:10.​1093/​hmg/​ddr048 PubMedCentral CrossRef PubMed
    4.Cronier S, Gros N, Tattum MH, Jackson GS, Clarke AR, Collinge J, Wadsworth JDF (2008) Detection and characterization of proteinase K-sensitive disease-related prion protein with thermolysin. Biochem J 416:297–305. doi:10.​1042/​BJ20081235 PubMedCentral CrossRef PubMed
    5.Cunningham C, Deacon R, Wells H, Boche D, Waters S, Diniz CP, Scott H, Rawlins JNP, Perry VH (2003) Synaptic changes characterize early behavioural signs in the ME7 model of murine prion disease. Eur J Neurosci 17:2147–2155CrossRef PubMed
    6.Deacon RM, Raley JM, Perry VH, Rawlins JN (2001) Burrowing into prion disease. NeuroReport 12:2053–2057CrossRef PubMed
    7.Deriziotis P, André R, Smith DM, Goold R, Kinghorn KJ, Kristiansen M, Nathan JA, Rosenzweig R, Krutauz D, Glickman MH, Collinge J, Goldberg AL, Tabrizi SJ (2011) Misfolded PrP impairs the UPS by interaction with the 20S proteasome and inhibition of substrate entry. EMBO J 30:3065–3077. doi:10.​1038/​emboj.​2011.​224 PubMedCentral CrossRef PubMed
    8.Dron M, Dandoy-Dron F, Farooq Salamat MK, Laude H (2009) Proteasome inhibitors promote the sequestration of PrPSc into aggresomes within the cytosol of prion-infected CAD neuronal cells. J Gen Virol 90:2050–2060. doi:10.​1099/​vir.​0.​010082-0 CrossRef PubMed
    9.Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428. doi:10.​1152/​physrev.​00027.​2001 CrossRef PubMed
    10.Goldbaum O, Vollmer G, Richter-Landsberg C (2006) Proteasome inhibition by MG-132 induces apoptotic cell death and mitochondrial dysfunction in cultured rat brain oligodendrocytes but not in astrocytes. Glia 53:891–901. doi:10.​1002/​glia.​20348 CrossRef PubMed
    11.Gomi H, Yokoyama T, Fujimoto K, Ikeda T, Katoh A, Itoh T, Itohara S (1995) Mice devoid of the glial fibrillary acidic protein develop normally and are susceptible to scrapie prions. Neuron 14:29–41CrossRef PubMed
    12.Goold R, McKinnon C, Rabbanian S, Collinge J, Schiavo G, Tabrizi SJ (2013) Alternative fates of newly formed PrPSc upon prion conversion on the plasma membrane. J Cell Sci. doi:10.​1242/​jcs.​120477 PubMedCentral PubMed
    13.Goold R, McKinnon C, Tabrizi SJ (2015) Prion degradation pathways: potential for therapeutic intervention. Mol Cell Neurosci 66:12–20. doi:10.​1016/​j.​mcn.​2014.​12.​009 PubMedCentral CrossRef PubMed
    14.Goold R, Rabbanian S, Sutton L, Andre R, Arora P, Moonga J, Clarke AR, Schiavo G, Jat P, Collinge J, Tabrizi SJ (2011) Rapid cell-surface prion protein conversion revealed using a novel cell system. Nat Commun 2:281. doi:10.​1038/​ncomms1282 PubMedCentral CrossRef PubMed
    15.Grassmann A, Wolf H, Hofmann J, Graham J, Vorberg I (2013) Cellular aspects of prion replication in vitro. Viruses 5:374–405. doi:10.​3390/​v5010374 PubMedCentral CrossRef PubMed
    16.Hilton KJ, Cunningham C, Reynolds RA, Perry VH (2013) Early hippocampal synaptic loss precedes neuronal loss and associates with early behavioural deficits in three distinct strains of prion disease. PLoS One 8:e68062. doi:10.​1371/​journal.​pone.​0068062 PubMedCentral CrossRef PubMed
    17.Homma T, Ishibashi D, Nakagaki T, Fuse T, Mori T, Satoh K, Atarashi R, Nishida N (2015) Ubiquitin-specific protease 14 modulates degradation of cellular prion protein. Sci Rep 5:11028. doi:10.​1038/​srep11028 PubMedCentral CrossRef PubMed
    18.Hori O, Ichinoda F, Yamaguchi A, Tamatani T, Taniguchi M, Koyama Y, Katayama T, Tohyama M, Stern DM, Ozawa K, Kitao Y, Ogawa S (2004) Role of Herp in the endoplasmic reticulum stress response. Genes Cells Devoted Mol Cell Mech 9:457–469. doi:10.​1111/​j.​1356-9597.​2004.​00735.​x CrossRef
    19.Hung AY, Sung CC, Brito IL, Sheng M (2010) Degradation of postsynaptic scaffold GKAP and regulation of dendritic spine morphology by the TRIM3 ubiquitin ligase in rat hippocampal neurons. PLoS One 5:e9842. doi:10.​1371/​journal.​pone.​0009842 PubMedCentral CrossRef PubMed
    20.Ironside JW, McCardle L, Hayward PA, Bell JE (1993) Ubiquitin immunocytochemistry in human spongiform encephalopathies. Neuropathol Appl Neurobiol 19:134–140CrossRef PubMed
    21.Kahana S, Finniss S, Cazacu S, Xiang C, Lee H-K, Brodie S, Goldstein RS, Roitman V, Slavin S, Mikkelsen T, Brodie C (2011) Proteasome inhibitors sensitize glioma cells and glioma stem cells to TRAIL-induced apoptosis by PKCε-dependent downregulation of AKT and XIAP expressions. Cell Signal 23:1348–1357. doi:10.​1016/​j.​cellsig.​2011.​03.​017 CrossRef PubMed
    22.Kang S-C, Brown DR, Whiteman M, Li R, Pan T, Perry G, Wisniewski T, Sy M-S, Wong B-S (2004) Prion protein is ubiquitinated after developing protease resistance in the brains of scrapie-infected mice. J Pathol 203:603–608. doi:10.​1002/​path.​1555 CrossRef PubMed
    23.Kisselev AF, Callard A, Goldberg AL (2006) Importance of the different proteolytic sites of the proteasome and the efficacy of inhibitors varies with the protein substrate. J Biol Chem 281:8582–8590. doi:10.​1074/​jbc.​M509043200 CrossRef PubMed
    24.Kristiansen M, Deriziotis P, Dimcheff DE, Jackson GS, Ovaa H, Naumann H, Clarke AR, van Leeuwen FWB, Menéndez-Benito V, Dantuma NP, Portis JL, Collinge J, Tabrizi SJ (2007) Disease-associated prion protein oligomers inhibit the 26S proteasome. Mol Cell 26:175–188. doi:10.​1016/​j.​molcel.​2007.​04.​001 CrossRef PubMed
    25.Kristiansen M, Messenger MJ, Klöhn P-C, Brandner S, Wadsworth JDF, Collinge J, Tabrizi SJ (2005) Disease-related prion protein forms aggresomes in neuronal cells leading to caspase activation and apoptosis. J Biol Chem 280:38851–38861. doi:10.​1074/​jbc.​M506600200 CrossRef PubMed
    26.Lee A-H, Iwakoshi NN, Anderson KC, Glimcher LH (2003) Proteasome inhibitors disrupt the unfolded protein response in myeloma cells. Proc Natl Acad Sci 100:9946–9951. doi:10.​1073/​pnas.​1334037100 PubMedCentral CrossRef PubMed
    27.Lee B-H, Lee MJ, Park S, Oh D-C, Elsasser S, Chen P-C, Gartner C, Dimova N, Hanna J, Gygi SP, Wilson SM, King RW, Finley D (2010) Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467:179–184. doi:10.​1038/​nature09299 PubMedCentral CrossRef PubMed
    28.Lindsten K, Menéndez-Benito V, Masucci MG, Dantuma NP (2003) A transgenic mouse model of the ubiquitin/proteasome system. Nat Biotechnol 21:897–902. doi:10.​1038/​nbt851 CrossRef PubMed
    29.Lobanova ES, Finkelstein S, Skiba NP, Arshavsky VY (2013) Proteasome overload is a common stress factor in multiple forms of inherited retinal degeneration. Proc Natl Acad Sci 110:9986–9991. doi:10.​1073/​pnas.​1305521110 PubMedCentral CrossRef PubMed
    30.Ma J, Lindquist S (2001) Wild-type PrP and a mutant associated with prion disease are subject to retrograde transport and proteasome degradation. Proc Natl Acad Sci USA 98:14955–14960. doi:10.​1073/​pnas.​011578098 PubMedCentral CrossRef PubMed
    31.McKinnon C, Tabrizi SJ (2014) The ubiquitin-proteasome system in neurodegeneration. Antioxid Redox Signal 21:2302–2321. doi:10.​1089/​ars.​2013.​5802 CrossRef PubMed
    32.Middeldorp J, Kamphuis W, Sluijs JA, Achoui D, Leenaars CHC, Feenstra MGP, van Tijn P, Fischer DF, Berkers C, Ovaa H, Quinlan RA, Hol EM (2009) Intermediate filament transcription in astrocytes is repressed by proteasome inhibition. FASEB J Off Publ Fed Am Soc Exp Biol 23:2710–2726. doi:10.​1096/​fj.​08-127696
    33.Mirabile I, Jat PS, Brandner S, Collinge J (2015) Identification of clinical target areas in the brainstem of prion-infected mice. Neuropathol Appl Neurobiol. doi:10.​1111/​nan.​12189 PubMed
    34.Moreno JA, Radford H, Peretti D, Steinert JR, Verity N, Martin MG, Halliday M, Morgan J, Dinsdale D, Ortori CA, Barrett DA, Tsaytler P, Bertolotti A, Willis AE, Bushell M, Mallucci GR (2012) Sustained translational repression by eIF2α-P mediates prion neurodegeneration. Nature 485:507–511. doi:10.​1038/​nature11058 PubMedCentral PubMed
    35.Schröder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789. doi:10.​1146/​annurev.​biochem.​73.​011303.​074134 CrossRef PubMed
    36.Sikorska B, Liberski PP, Giraud P, Kopp N, Brown P (2004) Autophagy is a part of ultrastructural synaptic pathology in Creutzfeldt–Jakob disease: a brain biopsy study. Int J Biochem Cell Biol 36:2563–2573. doi:10.​1016/​j.​biocel.​2004.​04.​014 CrossRef PubMed
    37.Suenaga T, Hirano A, Llena JF, Ksiezak-Reding H, Yen SH, Dickson DW (1990) Ubiquitin immunoreactivity in kuru plaques in Creutzfeldt–Jakob disease. Ann Neurol 28:174–177. doi:10.​1002/​ana.​410280210 CrossRef PubMed
    38.Suraweera A, Münch C, Hanssum A, Bertolotti A (2012) Failure of amino acid homeostasis causes cell death following proteasome inhibition. Mol Cell 48:242–253. doi:10.​1016/​j.​molcel.​2012.​08.​003 PubMedCentral CrossRef PubMed
    39.Tanaka A, Cleland MM, Xu S, Narendra DP, Suen D-F, Karbowski M, Youle RJ (2010) Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol 191:1367–1380. doi:10.​1083/​jcb.​201007013 PubMedCentral CrossRef PubMed
    40.Titler AM, Posimo JM, Leak RK (2013) Astrocyte plasticity revealed by adaptations to severe proteotoxic stress. Cell Tissue Res 352:427–443. doi:10.​1007/​s00441-013-1571-4 CrossRef PubMed
    41.Vaden JH, Bhattacharyya BJ, Chen P-C, Watson JA, Marshall AG, Phillips SE, Wilson JA, King GD, Miller RJ, Wilson SM (2015) Ubiquitin-specific protease 14 regulates c-Jun N-terminal kinase signaling at the neuromuscular junction. Mol Neurodegener 10:3. doi:10.​1186/​1750-1326-10-3 PubMedCentral CrossRef PubMed
    42.Wadsworth JDF, Powell C, Beck JA, Joiner S, Linehan JM, Brandner S, Mead S, Collinge J (2008) Molecular diagnosis of human prion disease. Methods Mol Biol Clifton NJ 459:197–227. doi:10.​1007/​978-1-59745-234-2_​14 CrossRef
    43.Wang K, Zhang J, Xu Y, Ren K, Xie W-L, Yan Y-E, Zhang B-Y, Shi Q, Liu Y, Dong X-P (2013) Abnormally upregulated αB-crystallin was highly coincidental with the astrogliosis in the brains of scrapie-infected hamsters and human patients with prion diseases. J Mol Neurosci MN. doi:10.​1007/​s12031-013-0057-x
    44.Xu Y, Tian C, Wang S-B, Xie W-L, Guo Y, Zhang J, Shi Q, Chen C, Dong X-P (2012) Activation of the macroautophagic system in scrapie-infected experimental animals and human genetic prion diseases. Autophagy 8:1604–1620. doi:10.​4161/​auto.​21482 PubMedCentral CrossRef PubMed
    45.Yedidia Y, Horonchik L, Tzaban S, Yanai A, Taraboulos A (2001) Proteasomes and ubiquitin are involved in the turnover of the wild-type prion protein. EMBO J 20:5383–5391. doi:10.​1093/​emboj/​20.​19.​5383 PubMedCentral CrossRef PubMed
    46.Zanotto-Filho A, Braganhol E, Battastini AMO, Moreira JCF (2012) Proteasome inhibitor MG132 induces selective apoptosis in glioblastoma cells through inhibition of PI3K/Akt and NFkappaB pathways, mitochondrial dysfunction, and activation of p38-JNK1/2 signaling. Invest New Drugs 30:2252–2262. doi:10.​1007/​s10637-012-9804-z CrossRef PubMed
  • 作者单位:Chris McKinnon (1)
    Rob Goold (1)
    Ralph Andre (1)
    Anny Devoy (1)
    Zaira Ortega (2) (3)
    Julie Moonga (1)
    Jacqueline M. Linehan (4)
    Sebastian Brandner (1) (5)
    José J. Lucas (2) (3)
    John Collinge (1) (4)
    Sarah J. Tabrizi (1)

    1. Department of Neurodegenerative Disease, University College London, Institute of Neurology, Queen Square, London, WC1N 3BG, UK
    2. Centro de Biología Molecular “Severo Ochoa”, (CBMSO) CSIC/UAM, Madrid, Spain
    3. Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
    4. MRC Prion Unit, University College London, Institute of Neurology, Queen Square, London, UK
    5. Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Pathology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0533
文摘
Prion diseases are a group of fatal neurodegenerative disorders characterised by the accumulation of misfolded prion protein (PrPSc) in the brain. The critical relationship between aberrant protein misfolding and neurotoxicity currently remains unclear. The accumulation of aggregation-prone proteins has been linked to impairment of the ubiquitin–proteasome system (UPS) in a variety of neurodegenerative disorders, including Alzheimer’s, Parkinson’s and Huntington’s diseases. As the principal route for protein degradation in mammalian cells, this could have profound detrimental effects on neuronal function and survival. Here, we determine the temporal onset of UPS dysfunction in prion-infected UbG76V-GFP reporter mice, which express a ubiquitin fusion proteasome substrate to measure in vivo UPS activity. We show that the onset of UPS dysfunction correlates closely with PrPSc deposition, preceding earliest behavioural deficits and neuronal loss. UPS impairment was accompanied by accumulation of polyubiquitinated substrates and found to affect both neuronal and astrocytic cell populations. In prion-infected CAD5 cells, we demonstrate that activation of the UPS by the small molecule inhibitor IU1 is sufficient to induce clearance of polyubiquitinated substrates and reduce misfolded PrPSc load. Taken together, these results identify the UPS as a possible early mediator of prion pathogenesis and promising target for development of future therapeutics. Keywords Prion PrP UPS Proteasome Neurodegeneration

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700