Evaluation of Accuracy and Stability of the Classical SPH Method Under Uniaxial Compression
详细信息    查看全文
  • 作者:R. Das ; P. W. Cleary
  • 关键词:Smoothed particle hydrodynamics ; Elasticity ; Uniaxial compression ; Stress waves ; Convergence ; Stability
  • 刊名:Journal of Scientific Computing
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:64
  • 期:3
  • 页码:858-897
  • 全文大小:5,529 KB
  • 参考文献:1.Monaghan, J.J.: Smoothed particle hydrodynamics. Ann. Rev. Astron. Astrophys. 30, 543-74 (1992)View Article
    2.Monaghan, J.J.: Smoothed particle hydrodynamics. Rep. Prog. Phys. 68, 1703-759 (2005)MathSciNet View Article
    3.Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics—theory and application to non-spherical stars. MNRAS 181, 375-89 (1977)View Article
    4.Lucy, L.B.: A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 1013-024 (1977)View Article
    5.Monaghan, J.J., Price, D.J.: Variational principles for relativistic smoothed particle hydrodynamics. Mon. Not. R. Astron. Soc. 328(2), 381-92 (2001)View Article
    6.Cleary, P.W.: Modelling confined multi-material heat and mass flows using SPH. Appl. Math. Model. 22(12), 981-93 (1998)View Article
    7.Cleary, P.W., Ha, J., Prakash, M., Nguyen, T.: Simulation of casting complex shaped objects using SPH. In: In San Francisco, CA, United States. pp. 317-26. Minerals, Metals and Materials Society, Warrendale, PA 15086, United States (2005)
    8.Cummins, S.J., Rudman, M.J.: Truly incompressible SPH. In: In Washington, DC, USA. p. 8. ASME, Fairfield, NJ, USA (1998)
    9.Cleary, P.W., Monaghan, J.J.: Conduction modelling using smoothed particle hydrodynamics. J. Comput. Phys. 148(1), 227-64 (1999)MathSciNet View Article
    10.Bonet, J., Kulasegaram, S.: A simplified approach to enhance the performance of smooth particle hydrodynamics methods. Appl. Math. Comput. (N. Y.) 126(2-), 133-55 (2002)MathSciNet View Article
    11.Cleary, P., Ha, J., Alguine, V., Nguyen, T.: Flow modelling in casting processes. Appl. Math. Model. 26(2), 171-90 (2002)View Article
    12.Cleary, P.W., Prakash, M., Ha, J., Stokes, N., Scott, C.: Smooth particle hydrodynamics: status and future potential. Prog. Comput. Fluid Dyn. 7(2-), 70-0 (2007)MathSciNet View Article
    13.Libersky, L.D., Petschek, A.G.: Smooth particle hydrodynamics with strength of materials. In: Trease, H., Crowley, W.P. (eds.) Advances in the Free-Lagrange Method. Springer, Berlin (1990)
    14.Wingate, C.A., Fisher, H.N.: Strength Modeling in SPHC. Los Alamos National Laboratory, Report No. LA-UR-93-3942 (1993)
    15.Gray, J.P., Monaghan, J.J., Swift, R.P.: SPH elastic dynamics. Comput. Methods Appl. Mech. Eng. 190(49-0), 6641-662 (2001)View Article
    16.Cleary, P.W., Prakash, M., Ha, J.: Novel applications of smoothed particle hydrodynamics (SPH) in metal forming. J. Mater. Process. Technol. 177(1-), 41-8 (2006)View Article
    17.Das, R., Cleary, P.W.: The potential for SPH modelling of solid deformation and fracture. In: Reddy, D. (ed.) IUTAM Proceedings Book Series Volume on “Theoretical, Computational and Modelling Aspects of Inelastic Media- pp. 287-96. Springer, Capetown (2008)
    18.Karekal, S., Das, R., Mosse, L., Cleary, P.W.: Application of a mesh-free continuum method for simulation of rock caving processes. Int. J. Rock Mech. Min. Sci. 48(5), 703-11 (2011)View Article
    19.Cleary, P.W., Prakash, M., Das, R., Ha, J.: Modelling of metal forging using SPH. Appl. Math. Model. 36(8), 3836-855 (2012)MathSciNet View Article
    20.Das, R., Cleary, P.W.: A mesh-free approach for fracture modelling of gravity dams under earthquake. Int. J. Fract. 179(1-), 9-3 (2013)View Article
    21.Das, R., Cleary, P.W.: Effect of rock shapes on brittle fracture using Smoothed Particle Hydrodynamics. Theor. Appl. Fract. Mech. 53(1), 47-0 (2010)View Article
    22.Fagan, T., Das, R., Lemiale, V., Estrin, Y.: Modelling of equal channel angular pressing using a mesh-free method. J. Mater. Sci. 47 (11), 4514-519 (2012)
    23.Islam, S., Ibrahim, R., Das, R., Fagan, T.: Novel approach for modelling of nanomachining using a mesh-less method. Appl. Math. Model. 36 (11), 5589-602 (2012)
    24.Bradley, G.L., Chang, P.C., McKenna, G.B.: Rubber modeling using uniaxial test data. J. Appl. Polym. Sci. 81(4), 837-48 (2001)View Article
    25.Liu, W.K., Jun, S., Li, S., Adee, J., Belytschko, T.: Reproducing kernel particle methods for structural dynamics. Int. J. Numer. Methods Eng. 38(10), 1655-679 (1995)MathSciNet View Article
    26.Chen, J.K., Beraun, J.E., Jih, C.J.: Improvement for tensile instability in smoothed particle hydrodynamics. Comput. Mech. 23(4), 279-87 (1999)View Article
    27.Liu, M.B., Liu, G.R.: Restoring particle consistency in smoothed particle hydrodynamics. Appl. Numer. Math. 56(1), 19-6 (2006)MathSciNet View Article
    28.Bonet, J., Kulasegaram, S.: Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations. Int. J. Numer. Methods Eng. 47(6), 1189-214 (2000)View Article
    29.Bonet, J., Kulasegaram, S.: Remarks on tension instability of Eulerian and Lagrangian corrected smooth particle hydrodynamics (CSPH) methods. Int. J. Numer. Methods Eng. 52(11), 1203-220 (2001)View Article
    30.Vidal, Y., Bonet, J., Huerta, A.: Stabilized updated Lagrangian corrected SPH for expli
  • 作者单位:R. Das (1)
    P. W. Cleary (2)

    1. Department of Mechanical Engineering, Centre for Advanced Composite Materials, University of Auckland, Auckland, 1010, New Zealand
    2. CSIRO Mathematics, Informatics and Statistics, Normanby Road, Clayton, VIC, 3168, Australia
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Algorithms
    Computational Mathematics and Numerical Analysis
    Applied Mathematics and Computational Methods of Engineering
    Mathematical and Computational Physics
  • 出版者:Springer Netherlands
  • ISSN:1573-7691
文摘
The accuracy and stability of the classical formulation of the smoothed particle hydrodynamics (SPH) method for modelling compression of elastic solids is studied to assess its suitability for predicting solid deformation. SPH has natural advantages for simulating problems involving compression of deformable solids arising from its ability to handle large deformation without re-meshing, complex free surface behaviour and tracking of multiple material interfaces. The ‘classical SPH method- as originally proposed by Monaghan?(in Ann Rev Astron 30:543-74, 1992, Rep Prog Phys 68:1703-759, 2005), has become broadly established as a robust method in different areas, especially involving fluid flows. However, limited attention has been paid to understanding of its numerical performance for elastic deformation problems. To address this, we evaluate the classical SPH method to explore its stability, accuracy and convergence and the effect of numerical parameters on elastic solutions using a generic uniaxial stress test. Short term transient and long term uniform state SPH solutions agree well with those from the finite element method (FEM). The SPH elastic deformation solution showed good convergence with increasing particle resolution. The tensile instability stabilisation method was found to have little impact on the solution, except for higher values of the correction factor which then produce small amplitude benign artificial banded stress patterns. The use of artificial viscosity is able to eliminate the instability and improve the accuracy of the solutions. Overall, the classical SPH method appears to be robust and suitable for accurate modelling of elastic solids under compression.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700