Skeletal regulatory proteins enhance thin filament sliding speed and force by skeletal HMM
详细信息    查看全文
  • 作者:Emilie Warner Clemmens (1)
    Michael Regnier (1)
  • 刊名:Journal of Muscle Research and Cell Motility
  • 出版年:2004
  • 出版时间:October 2004
  • 年:2004
  • 卷:25
  • 期:7
  • 页码:515-525
  • 全文大小:377KB
  • 参考文献:1. Anson, M (1992) Temperature dependence and Arrhenius activation energy of F-actin velocity generated in vitro by skeletal myosin. J Mol Biol 224: pp. 1029-1038 <a class="external" href="http://dx.doi.org/10.1016/0022-2836(92)90467-X">CrossRefa>
    2. Bing, W, Knott, A, Marston, SB (2000) A simple method for measuring the relative force exerted by myosin on actin filaments in the in vitro motility assay: evidence that tropomyosin and troponin increase force in single thin filaments. Biochem J 350: pp. 693-699 <a class="external" href="http://dx.doi.org/10.1042/0264-6021:3500693">CrossRefa>
    3. Chalovich, JM (2002) Regulation of striated muscle contraction: a discussion. J Muse Res Cell Motil 23: pp. 353-361 <a class="external" href="http://dx.doi.org/10.1023/A:1022066922922">CrossRefa>
    4. Chase, PB, Kushmerick, MJ (1995) Effect of physiological ADP concentrations on contraction of single skinned fibers from rabbit fast and slow muscles. Am J Physiol 268: pp. C480-C489
    5. Clemmens, EW, Gordon, AM, Regnier, M (2003) Effects of changing cross-bridge cycling rate on force and filament sliding velocity in microneedle-in vitro motility assays. Biophys J 84: pp. 446a
    6. Dantzig, JA, Hibberd, MG, Trentham, DR, Goldman, YE (1991) Cross-bridge kinetics in the presence of MgADP investigated by photolysis of caged ATP in rabbit psoas muscle fibres. J Physiol 432: pp. 639-580
    7. Gerson, JH, Bobkova, E, Homsher, E, Reisler, E (1999) Role of residues 311/312 in actin-tropomyosin interaction. In vitro motility study using yeast actin mutant e311a/r312a. J Biol Chem 274: pp. 17545-17550 <a class="external" href="http://dx.doi.org/10.1074/jbc.274.25.17545">CrossRefa>
    8. Gordon, AM, Chen, Y, Liang, B, LaMadrid, M, Luo, Z, Chase, PB (1998) Skeletal muscle regulatory proteins enhance F-actin in vitro modtility. Adv Exp Med Biol 453: pp. 187-196
    9. Gordon, AM, LaMadrid, MA, Chen, Y, Luo, Z, Chase, PB (1997) Calcium regulation of skeletal muscle thin filament motility in vitro. Biophys J 72: pp. 1295-1307
    10. Gordon, AM, Homsher, E, Regnier, M (2000) Regulation of contraction in striated muscle. Physiol Rev 80: pp. 853-924
    11. Greene, LE, Eisenberg, E (1980) Cooperative binding of myosin subfragment-1 to the actin鈥搕roponin鈥搕ropomyosin complex. Proc Natl Acad Sci USA 77: pp. 2616-2620
    12. Homsher, E, Lacktis, J, Regnier, M (1997) Strain-dependent modulation of phosphate transients in rabbit skeletal muscle fibers. Biophys J 72: pp. 1780-1791
    13. Homsher, E, Lee, DM, Morris, C, Pavlov, D, Tobacman, LS (2000) Regulation of force and unloaded sliding speed in single thin filaments: effects of regulatory proteins and calcium. J Physiol 524: pp. 233-243 <a class="external" href="http://dx.doi.org/10.1111/j.1469-7793.2000.00233.x">CrossRefa>
    14. Homsher, E, Nili, M, Chen, IY, Tobacman, LS (2003) Regulatory proteins alter nucleotide binding to acto-myosin of sliding filaments in motility assays. Biophys J 85: pp. 1046-1052
    15. Homsher, E, Wang, F, Sellers, J (1993) Factors affecting filament velocity in in vitro motility assays and their relation to unloaded shortening velocity in muscle fibers. Adv Exp Med Biol 332: pp. 279-289
    16. Kron, SJ, Toyoshima, YY, Uyeda, TQ, Spudich, JA (1991) Assays for actin sliding movement over myosin-coated surfaces. Meth Enzymol 196: pp. 399-416
    17. Lehrer, SS, Morris, EP (1982) Dual effects of tropomyosin and troponin鈥搕ropomyosin on actomyosin subfragment 1 ATPase. J Biol Chem 257: pp. 8073-8080
    18. Liang, B, Chen, Y, Wang, CK, Luo, Z, Regnier, M, Gordon, AM, Chase, PB (2003) Ca(2+) regulation of rabbit skeletal muscle thin filament sliding: role of cross-bridge number. Biophys J 85: pp. 1775-1786
    19. Margossian, SS, Lowey, S (1982) Preparation of myosin and its subfragments from rabbit skeletal muscle. Meth Enzymol 85: pp. 55-71
    20. McKillop, DF, Geeves, MA (1993) Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament. Biophys J 65: pp. 693-701
    21. Millar, NC, Homsher, E (1990) The effect of phosphate and calcium on force generation in glycerinated rabbit skeletal muscle fibers. A steady-state and transient kinetic study. J Biol Chem 265: pp. 20234-20240
    22. Pardee, JD, Spudich, JA (1982) Purification of muscle actin. Meth Enzymol 85: pp. 164-181
    23. Pate, E, Cooke, R (1989) A model of crossbridge action: the effects of ATP, ADP and Pi. J Muscle Res Cell Motil 10: pp. 181-196 <a class="external" href="http://dx.doi.org/10.1007/BF01739809">CrossRefa>
    24. Pavlov, D, Gerson, JH, Yu, T, Tobacman, LS, Homsher, E, Reisler, E (2003) The regulation of subtilisin-cleaved actin by tropomyosin/troponin. J Biol Chem 278: pp. 5517-5522 <a class="external" href="http://dx.doi.org/10.1074/jbc.M210889200">CrossRefa>
    25. Potter, JD (1982) Preparation of troponin and its subunits. Meth Enzymol 85: pp. 241-263
    26. Ranatunga, KW, Wylie, SR (1983) Temperature-dependent transitions in isometric contractions of rat muscle. J Physiol 339: pp. 87-95
    27. Regnier, M, Homsher, E (1998) The effect of ATP analogs on posthydrolytic and force development steps in skinned skeletal muscle fibers. Biophys J 74: pp. 3059-3071
    28. Regnier, M, Lee, DM, Homsher, E (1998a) ATP analogs and muscle contraction: mechanics and kinetics of nucleoside triphosphate binding and hydrolysis. Biophys J 74: pp. 3044-3058
    29. Regnier, M, Martyn, DA, Chase, PB (1998b) Calcium regulation of tension redevelopment kinetics with 2-deoxy-ATP or low [ATP] in rabbit skeletal muscle. Biophys J 74: pp. 2005-2015
    30. Regnier, M, Morris, C, Homsher, E (1995) Regulation of the cross-bridge transition from a weakly to strongly bound state in skinned rabbit muscle fibers. Am J Physiol 269: pp. C1532-C1539
    31. Sellers, JR, Cuda, G, Wang, F, Homsher, E (1993) Myosin-specific adaptations of the motility assay. Meth Cell Biol 39: pp. 23-49
    32. Smillie, LB (1982) Preparation and identification of alpha- and beta-tropomyosins. Meth Enzymol 85: pp. 234-241
    33. Tesi, C, Colomo, F, Nencini, S, Piroddi, N, Poggesi, C (1999) Modulation by substrate concentration of maximal shortening velocity and isometric force in single myofibrils from frog and rabbit fast skeletal muscle. J Physiol 516: pp. 847-853 <a class="external" href="http://dx.doi.org/10.1111/j.1469-7793.1999.0847u.x">CrossRefa>
    34. Warner, EC, Gordon, AM, Regnier, M (2002) 2-deoxy-ATP alters thin filament motility in assays with skeletal and cardiac HMM. Biophys J 82: pp. 403a
    35. Williams, DL, Greene, LE, Eisenberg, E (1988) Cooperative turning on of myosin subfragment 1 adenosinetriphosohatase activity by the troponin-tropomyosin-actin complex. Biochemistry 27: pp. 6987-6993 <a class="external" href="http://dx.doi.org/10.1021/bi00418a048">CrossRefa>
    36. Zhao, Y, Kawai, M (1994) Kinetic and thermodynamic studies of the cross-bridge cycle in rabbit psoas muscle fibers. Biophys J 67: pp. 1655-1668
  • 作者单位:Emilie Warner Clemmens (1)
    Michael Regnier (1)

    1. University of Washington, Box 357962, Seattle, WA, 98195
文摘
At saturating calcium and nucleotide concentrations, troponin (Tn) and tropomyosin (Tm) enhance the in vitro motility speed of individual actin filaments, suggesting the roles of these thin filament proteins in regulating contraction may include a modulation of crossbridge kinetics. Using a homogeneous complement of fast rabbit skeletal proteins, we examined if Tn and Tm modify specific transitions in the crossbridge cycle by varying skeletal muscle crossbridge kinetics and measuring actin filament sliding speed and steady-state force using the in vitro motility and microneedle assays, respectively. Skeletal regulatory proteins increased the force and sliding speed of actin filaments sliding on skeletal HMM. Faster crossbridge cycling with increased temperature or with substitution of dATP as the contractile substrate resulted in both increased sliding speed and force of unregulated filaments, while the addition of regulatory proteins diminished or eliminated this increase. In contrast, regulatory proteins did not influence filament mechanics when crossbridge cycling was slowed with lowered ATP concentration. The results are most simply explained if addition of the Tn and Tm complex to actin enhances both the transition rate of the force-generating actomyosin isomerization (or the preceding transition) and the apparent crossbridge detachment rate, but that the relative influence of Tn and Tm is dependent on the external load.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700