Convective and stratiform precipitation characteristics in an ensemble of regional climate model simulations
详细信息    查看全文
  • 作者:Jan Kyselý ; Zuzana Rulfová ; Aleš Farda ; Martin Hanel
  • 关键词:Regional climate models ; Convective precipitation ; Stratiform precipitation ; Climatology ; Extremes ; Central Europe
  • 刊名:Climate Dynamics
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:46
  • 期:1-2
  • 页码:227-243
  • 全文大小:3,684 KB
  • 参考文献:Anagnostou EN (2004) A convective/stratiform precipitation classification algorithm for volume scanning weather radar observations. Meteorol Appl 11:291–300CrossRef
    Ban N, Schmiedli J, Schär C (2014) Evaluation of the convection-resolving regional climate modelling approach in decade-long simulations. J Geophys Res 119:7889–7907
    Boberg F, Berg P, Thejll P, Gutowski W, Christensen J (2010) Improved confidence in climate change projections of precipitation further evaluated using daily statistics from ENSEMBLES models. Clim Dyn 35:1509–1520CrossRef
    Bougeault P (1985) A simple parameterization of the large-scale effects of cumulus convection. Mon Weather Rev 113:2108–2121CrossRef
    Boyle J, Klein SA (2010) Impact of horizontal resolution on climate model forecasts of tropical precipitation and diabatic heating for the TWP-ICE period. J Geophys Res 115:D23112CrossRef
    Brockhaus P, Lüthi D, Schär C (2008) Aspects of the diurnal cycle in a regional climate model. Meteorol Z 17:433–443. doi:10.​1127/​0941-2948/​2008/​0316 CrossRef
    Christensen JH, Christensen OB, Lopez P, van Meijgaard E, Botzet M (1996) The HIRHAM4 regional atmospheric climate model. Scientific Report 96–4. Danish Meteorological Institute: Copenhagen, Denmark
    Christensen JH, Kjellström E, Giorgi F, Lenderink G, Rummukainen M (2010) Weight assignment in regional climate models. Clim Res 44:179–194CrossRef
    Coles S (2001) An introduction to statistical modeling of extreme values. Springer, LondonCrossRef
    Dai A (2006) Precipitation characteristics in eighteen coupled climate models. J Clim 19:4605–4630CrossRef
    Dai A, Trenberth KE (2004) The diurnal cycle and its depiction in the community climate system model. J Clim 5:930–951CrossRef
    Déqué M, Rowell DP, Lüthi D, Giorgi F, Christensen JH, Rockel B, Jacob D, Kjellström E, de Castro M, van den Hurk B (2007) An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Clim Change 81:53–70CrossRef
    Durman CF, Gregory JM, Hassel DC, Jones RG, Murphy JM (2001) Comparison of extreme European daily precipitation simulated by a global and regional model for present and future climate. Q J R Meteorol Soc 1127:1005–1015CrossRef
    Farda A, Štěpánek P, Halenka T, Skalák P, Belda M (2007) Model Aladin in climate mode forced with ERA-40 reanalysis (coarse resolution experiment). Meteorol J 10:123–130CrossRef
    Farda A, Deque M, Somot S, Horanyi A, Spiridonov V, Toth H (2010) Model Aladin as regional climate model for Central and Eastern Europe. Stud Geophys Geod 54:313–332CrossRef
    Fischer AM, Keller DE, Liniger MA, Rajczak J, Schär C, Appenzeller C (2014) Projected changes in precipitation intensity and frequency in Switzerland: a multi-model perspective. Int J Climatol, doi: 10.​1002/​joc.​4162 (in press)
    Fowler HJ, Ekström M, Blenkinsop S, Smith AP (2007) Estimating change in extreme European precipitation using a multimodel ensemble. J Geophys Res 112:D18104. doi:10.​1029/​2007JD008619 CrossRef
    Frei C, Christensen J, Deque M, Jacob D, Jones R, Vidale P (2003) Daily precipitation statistics in regional climate models: evaluation and intercomparison for the European Alps. J Geophys Res 108:4124. doi:10.​1029/​2002JD002287 CrossRef
    Gerard L, Geleyn J-F (2005) Evolution of a subgrid deep convection parametrization in a limited-area model with increasing resolution. Q J R Meteorol Soc 131:2293–2312. doi:10.​1256/​qj.​04.​72 CrossRef
    Giorgi F, Bi X, Pal JS (2004) Mean, interannual variability and trends in a regional climate change experiment over Europe. I. Present day climate (1961–1990). Clim Dyn 22:733–756CrossRef
    Gregersen IB, Sørup HJD, Madsen H, Rosbjerg D, Mikkelsen PS, Arnbjerg-Nielsen K (2013) Assessing future climatic changes of rainfall extremes at small spatio-temporal scales. Clim Change 118:783–797. doi:10.​1007/​s10584-012-0669-0 CrossRef
    Gregory D, Guichard F (2002) Aspects of the parametrization of organized convection: contrasting cloud-resolving model and single-column model realizations. Q J R Meteorol Soc 128:625–646. doi:10.​1256/​0035900023210421​26 CrossRef
    Guichard F, Petch JC, Redelsperger J-L, Bechtold P, Chaboureaou J-P et al (2004) Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models. Q J R Meteorol Soc 130:3139–3172CrossRef
    Hagemann S, Arpe K, Bengtsson L (2005) Validation of the hydrological cycle of ERA40. Reports on Earth System Science 10, Max-Planck-Institute for Meteorology, Hamburg, ISSN 1614-1199
    Hanel M, Buishand TA (2010) On the value of hourly precipitation extremes in regional climate model simulations. J Hydrol 393:265–273CrossRef
    Herrera S, Fita L, Fernández J, Gutiérrez JM (2010) Evaluation of the mean and extreme precipitation regimes from the ENSEMBLES regional climate multimodel simulation over Spain. J Geophys Res 115:D21117CrossRef
    Hohenegger C, Brockhaus P, Schär C (2008) Towards climate simulations at cloud-resolving scales. Meteorol Z 17:383–394. doi:10.​1127/​0941-2948/​2008/​0303 CrossRef
    Holtanová E, Mikšovský J, Kalvová J, Pišoft P, Motl M (2012) Performance of ENSEMBLES regional climate models over Central Europe using various metrics. Theor Appl Climatol 108:463–470CrossRef
    Hosking JRM, Wallis JR (1997) Regional frequency analysis. An approach based on L-moments. Cambridge University Press, CambridgeCrossRef
    Houze RAJ (1997) Stratiform precipitation in regions of convection: a meteorological paradox? Bull Am Meteorol Soc 78:2179–2196CrossRef
    Hu L, Li Y, Song Y, Deng D (2011) Seasonal variability in tropical and subtropical convective and stratiform precipitation of the East Asian monsoon. Sci China Earth Sci 54:1595–1603CrossRef
    Huff FA, Shipp WL (1969) Spatial correlations of storm, monthly, and seasonal precipitation. J Appl Meteorol 8:542–550CrossRef
    Jacob D (2001) A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Meteorol Atmos Phys 77:61–73CrossRef
    Jacob D, Bärring L, Christensen OB, Christensen JH, de Castro M et al (2007) An inter-comparison of regional climate models for Europe: model performance in present-day climate. Clim Change 81:31–52CrossRef
    Jaeger E, Anders I, Luthi D, Rockel B, Schar C, Seneviratne S (2008) Analysis of ERA40-driven CLM simulation for Europe. Meteorol Z 17:349–367CrossRef
    Kain JS, Fritsch JM (1993) Convective parameterization for mesoscale models: the Kain-Fritsch scheme. In: The representation of cumulus convection in numerical models. Meteor Monogr 24. American Meteorological Society, Boston, pp 165–170
    Kendon EJ, Roberts NM, Senior CA, Roberts MJ (2012) Realism of rainfall in a very high resolution regional climate model. J Clim 25:5791–5806. doi:10.​1175/​JCLI-D-11-00562.​1 CrossRef
    Kendon EJ, Roberts NM, Fowler HJ, Roberts MJ, Chan SC, Senior C (2014) Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat Clim Change. doi:10.​1038/​nclimate2258
    Kjellström E, Barring L, Gollvik L, Hansson U, Jones C et al (2005) A 140-year simulation of European climate with the new version of the Rossby Centre regional atmospheric climate model (RCA3). SMHI reports meteorology and climatology 108, SMHI, SE-60176. Norrköping, Sweden, p 54
    Kjellström E, Boberg F, Castro M, Christensen JH, Nikulin G, Sanchez E (2010) Daily and monthly temperature and precipitation statistics as performance indicators for regional climate models. Clim Res 44:135–150. doi:10.​3354/​cr00932 CrossRef
    Klein Tank AMG, Wijngaard JB, Konnen GP, Bohm R, Demaree G et al (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int J Climatol 22:1441–1453CrossRef
    Kyselý J, Beguería S, Beranová R, Gaál L, López-Moreno JI (2012) Different patterns of climate change scenarios for short-term and multi-day precipitation extremes in the Mediterranean. Glob Planet Change 98–99:63–72. doi:10.​1016/​j.​gloplacha.​2012.​06.​010 CrossRef
    Lam HY, Luini L, Din J, Capsoni C, Panagopoulos AD (2010) Stratiform and convective rain discrimination for equatorial region. In: Proceedings of the 2010 IEEE student conference on research and development—engineering: innovation and beyond, SCOReD 2010, 112–116. doi:10.​1109/​SCORED.​2010.​5703983
    Larsen MAD, Thejll P, Christensen JH, Refsgaard JC, Jensen KH (2013) On the role of domain size and resolution in the simulations with the HIRHAM region climate model. Clim Dyn 40:2903–2918. doi:10.​1007/​s00382-012-1513-y CrossRef
    Lee M-I, Schubert SD, Suarez MJ, Held IM, Kumar A, Bell TL, Schemm JKE, Lau NC, Ploshay JJ, Kim HK, Yoo SH (2007) Sensitivity to horizontal resolution in the AGCM simulations of warm season diurnal cycle of precipitation over the United States and northern Mexico. J Climate 20:1862–1881CrossRef
    Lenderink G, van Meijgaard E (2008) Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat Geosci 1:511–514. doi:10.​1038/​ngeo262 CrossRef
    Lenderink G, van der Hurk B, van Meijgaard E, van Ulden A, Cuijpers H (2003) Simulation of present day climate in RACMO2: first results and model developments. KNMI, Technical Report 252, 24 pp
    Li F, Collins WD, Wehner MF, Williamson DL, Olson JG, Algieri C (2011) Impact of horizontal resolution on simulation of extremes in an aqua-planet version of Community Atmospheric Model (CAM3). Tellus 63A:884–892CrossRef
    Maraun D, Osborn TJ, Rust HW (2012) The influence of synoptic airflow on UK daily precipitation extremes. Part II: regional climate model and E-OBS data validation. Clim Dyn 39:287–301. doi:10.​1007/​s00382-011-1176-0 CrossRef
    May W (2007) The simulation of the variability and extremes of daily precipitation over Europe by the HIRHAM regional climate model. Glob Planet Change 57:59–82. doi:10.​1016/​j.​gloplacha.​2006.​11.​026 CrossRef
    Molinari J, Dudek M (1992) Parameterization of convective precipitation in mesoscale numerical models: a critical review. Mon Weather Rev 120:326–344CrossRef
    Noguer M, Jones RG, Murphy JM (1998) Sources of systematic errors in the climatology of a regional climate model over Europe. Clim Dyn 14:691–712CrossRef
    Overeem A, Buishand TA, Holleman I, Uijlenhoet R (2010) Extreme value modelling of areal rainfall from weather radar. Water Resour Res 46:W09514. doi:10.​1029/​2009WR008517
    Plavcová E, Kyselý J, Štěpánek P (2014) Links between circulation types and precipitation in Central Europe in the observed data and regional climate model simulations. Int J Climatol 34:2885–2898. doi:10.​1002/​joc.​3882
    Radu R, Déqué M, Somot S (2008) Spectral nudging in a spectral regional climate model. Tellus 60A:898–910CrossRef
    Rauscher SA, Coppola E, Piani C, Giorgi F (2010) Resolution effects on regional climate model simulations of seasonal precipitation over Europe. Clim Dyn 35:685–711CrossRef
    Řezáčová D, Pešice P, Sokol Z (2005) An estimation of the PMP for river basins in the Czech Republic. Atmos Res 77:407–421CrossRef
    Rulfová Z, Kyselý J (2013) Disaggregating convective and stratiform precipitation from station weather data. Atmos Res 134:100–115CrossRef
    Sanchéz E, Gallardo C, Gaertner MA, Arribas A, Castro M (2004) Future climate extreme events in the Mediterranean simulated by a regional climate model: a first approach. Glob Planet Change 44:163–180CrossRef
    Schumacher C, Houze RA (2003) Stratiform rain in the tropics as seen by the TRMM precipitation radar. J Clim 16:1739–1756CrossRef
    Sempere-Torres D, Sanchez-Diezma R, Zawadzki I, Creutin JD (2000) Identification of stratiform and convective areas using radar data with application to the improvement of DSD analysis and Z-R relations. Phys Chem Earth 25:985–990CrossRef
    Skalák P, Déqué M, Belda M, Farda A, Halenka T, Csima G, Bartholy J, Caian M, Spiridonov V (2014) CECILIA regional climate simulations for present climate—validation and inter-comparison. Clim Res. doi:10.​3354/​cr01207
    Skaugen T (1997) Classification of rainfall into small- and large-scale events by statistical pattern recognition. J Hydrol 200:40–57. doi:10.​1016/​S0022-1694(97)00003-6 CrossRef
    Svensson C, Jones DA (2010) Review of methods for deriving areal reduction factors. J Flood Risk Manag 3:232–245CrossRef
    Swann H (2001) Evaluation of the mass-flux approach to parametrizing deep convection. Q J R Meteorol Soc 127:1239–1260CrossRef
    Tao W-K, Lang S, Simpson J, Olson WS, Johnson D, Ferrier B, Kummerow C, Adler R (2000) Vertical profiles of latent heat release and their retrieval for TOGA COARE convective systems using a cloud resolving model, SSM/I, and ship-borne radar data. J Meteorol Soc Jpn 78:333–355
    Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779–1800CrossRef
    Tolasz R et al (2007) Climate Atlas of Czechia. Czech Hydrometeorological Institute and Palacký University, Prague and Olomouc
    Uppala SM, Kallberg PW, Simmons AJ, Andrae U, Bechtold VDC et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012. doi:10.​1256/​qj.​04.​176 CrossRef
    Wakazuki Y, Nakamura M, Kanada S, Muroi C (2008) Climatological reproducibility evaluation and future climate projection of extreme precipitation events in the baiu season using a high-resolution non-hydrostatic RCM in comparison with an AGCM. J Meteorol Soc Jpn 86:951–967CrossRef
    Wilks DS (1995) Statistical methods in the atmospheric science. Academic Press, San Diego, p 467
    Williamson DL (2013) The effect of time steps and time-scales on parametrization suites. Q J R Meteorol Soc 139:548–560. doi:10.​1002/​qj.​1992 CrossRef
    Zadra A, Caya D, Cote J, Dugas B, Jones C, Laprise R, Winger K, Caron L-P (2008) The next Canadian regional climate model. Phys Can 64:75–83
  • 作者单位:Jan Kyselý (1) (2)
    Zuzana Rulfová (1) (3)
    Aleš Farda (4)
    Martin Hanel (2)

    1. Institute of Atmospheric Physics AS CR, Boční II 1401, 141 31, Prague 4, Czech Republic
    2. Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Czech Republic
    3. Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
    4. Global Change Research Centre AS CR, Brno, Czech Republic
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geophysics and Geodesy
    Meteorology and Climatology
    Oceanography
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0894
文摘
We apply a recently proposed algorithm for disaggregating observed precipitation data into predominantly convective and stratiform, and evaluate biases in characteristics of parameterized convective (subgrid) and stratiform (large-scale) precipitation in an ensemble of 11 RCM simulations for recent climate in Central Europe. All RCMs have a resolution of 25 km and are driven by the ERA-40 reanalysis. We focus on mean annual cycle, proportion of convective precipitation, dependence on altitude, and extremes. The results show that characteristics of total precipitation are often better simulated than are those of convective and stratiform precipitation evaluated separately. While annual cycles of convective and stratiform precipitation are reproduced reasonably well in most RCMs, some of them consistently and substantially overestimate or underestimate the proportion of convective precipitation throughout the year. Intensity of convective precipitation is underestimated in all RCMs. Dependence on altitude is also simulated better for stratiform and total precipitation than for convective precipitation, for which several RCMs produce unrealistic slopes. Extremes are underestimated for convective precipitation while they tend to be slightly overestimated for stratiform precipitation, thus resulting in a relatively good reproduction of extremes in total precipitation amounts. The results suggest that the examined ensemble of RCMs suffers from substantial deficiencies in reproducing precipitation processes and support previous findings that climate models’ errors in precipitation characteristics are mainly related to deficiencies in the representation of convection.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700