Molecular cloning and expression analysis of four turmeric MAP kinase genes in response to abiotic stresses and phytohormones
详细信息    查看全文
  • 作者:S. Nanda (1)
    S. Nayak (1)
    R. K. Joshi (1)
  • 关键词:abscisic acid ; ClMPKs ; chromium ; cold ; Curcuma longa ; methyl jasmonate ; RT ; qPCR ; salinity ; water stress
  • 刊名:Biologia Plantarum
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:58
  • 期:3
  • 页码:479-490
  • 全文大小:2,247 KB
  • 参考文献:1. Agrawal, G.K., Rakwal, R., Iwahashi, H.: Isolation of novel rice ( / Oryza sativa L.) multiple stress responsive MAP kinase gene, / OsMSRMK2, whose mRNA accumulates rapidly in response to environmental cues. 鈥?Biochem. biophys. Res. Commun. 294: 1009鈥?016, 2002. CrossRef
    2. Asai, T., Tena, G., Plotnikova, J., Willmann, M.R., Chiu, W.L., Gomez-Gomez, L., Boller, T., Ausubel, F.M., Sheen, J.: MAP kinase signalling cascade in / Arabidopsis innate immunity. 鈥?Nature. 415: 977鈥?83. 2002. CrossRef
    3. Bailey T.L., Williams, N., Misleh, C., Li, W.W.: / MEME: discovering and analyzing DNA and protein sequence motifs. 鈥?Nucl. Acids Res. 34(Suppl.): W369鈥揥373, 2006. CrossRef
    4. Becker, G.J.M., Jaskiewicz, M., Liu, Y., Underwood, W.R., He, S.Y., Zhang, S., Conrath, U.: Mitogen activated protein kinase 3 and 6 are required for full priming of stress responses in / Arabidopsis thaliana. 鈥?Plant Cell 21: 944鈥?53. 2009. CrossRef
    5. Berberich, T., Sano, H., Kusano, T.: Involvement of a MAP kinase, ZmMPK5, in senescence and recovery from low temperature stress in maize. 鈥?Mol. gen. Genet. 262: 534鈥?42, 1999. CrossRef
    6. Blanco, F.A., Zanetti, M.E., Casalonguem, C.A., Daleo, G.R.: Molecular characterization of a potato MAP kinase transcriptionally regulated by multiple environmental stresses. 鈥?Plant Physiol. Biochem. 44: 315鈥?2. 2006.
    7. Chen, L., Hu, W., Tan, S., Wang, M., Ma, Z., Zhou, S., Send, S., Zhang, Y., Huang, C., Yang, G., He, G.: Genome-wide identification and analysis of MAPK and MAPKK gene families in / Brachypodium distachyon. 鈥?PLOS One. 7: e46744, 2012. CrossRef
    8. Ding, H., Tan, M., Zhang, C., Zhang, Z., Zhang, A., Kang, Y.: Hexavalent chromium (VI) stress induces mitogen-activated protein kinase activation mediated by distinct signal molecules in roots of / Zea mays L. 鈥?Environ. exp. Bot. 67: 328鈥?34. 2009. CrossRef
    9. Dombrowski, J.E., Hind, S.R., Martin, R.C., Stratmann, J.W.: Wounding systemically activates a mitogen activated protein kinase in forage and turf grasses. 鈥?Plant Sci. 180: 686鈥?93, 2011. CrossRef
    10. Doyle, J.J., Doyle, J, L.: Isolation of plant genomic DNA from fresh tissue. 鈥?Focus 12: 1241鈥?251, 1990.
    11. Frohman, M.A., Dush, M.K., Martin, G.R.: Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene specific oligonucleotide primer. 鈥?Proc. nat. Acad. Sci. USA 85: 8998鈥?002. 1988. CrossRef
    12. Gudesblat, G.E., Iusem, N.D., Morris, P.C.: Guard cell-specific inhibition of / Arabidopsis MPK3 expression causes abnormal stomatal responses to abscisic acid and hydrogen peroxide. 鈥?New Phytol. 173: 713鈥?21. 2007. CrossRef
    13. Hamel, L.P., Nicole, M.C., Sritubtim, S., Morency, M.J., Ellis, M., Ehlting, J., Beaudoin, N., Barbazuk, B., Klessig, D., Lee, J., Martin, G., Mundy, J., Ohashi, Y., Scheel, D., Sheen, J., Xing, T., Zhang, S., Seguin, A., Ellis, B.E.: Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. 鈥?Trends Plant Sci. 11: 192鈥?98, 2006. CrossRef
    14. He, C., Fong, S.H., Yang, D., Wang, G.L.: BWMK1, a novel MAP kinase induced by fungal infection and mechanical wounding in rice. 鈥?Mol. Plant-Microbe Interact. 12: 1064鈥?073, 1999. CrossRef
    15. Huang, H.J., Fu, S.F., Tai, Y.H., Chou, W.C., Huang, D.D.: Expression of / Oryza sativa MAP kinase gene is developmentally regulated and stress-responsive. 鈥?Physiol. Plant. 114: 572鈥?80. 2002. CrossRef
    16. Ichimura, K., Mizoguchi, T., Yoshida, R., Yuasa, T., Shinozaki, K.: Various abiotic stresses rapidly activate / Arabidopsis MAP kinases / AtMPK4 and / AtMPK6. 鈥?Plant J. 24: 655鈥?65, 2000. CrossRef
    17. Jonak, C., Okresz, L., Bogre, L., Hirt, H.: Complexity, cross talk and integration of plant MAP kinase signalling. 鈥?Curr. Opin. Plant Biol. 5: 415鈥?24, 2002. CrossRef
    18. Joshi, R.K., Kar, B., Nayak, S.: Characterization of mitogen activated protein kinases (MAPKs) in the / Curcuma longa expressed sequence tag database. 鈥?Bioinformation 7: 180鈥?83, 2011. CrossRef
    19. Kumar, K.R.R., Srinivasan, T., Kirti, P.B.: A mitogen activated protein kinase gene, / AhMPK3 of peanut: molecular cloning, genomic organization, and heterologous expression conferring resistance against / Spodoptera litura in tobacco. 鈥?Mol. Genet. Genom. 282: 65鈥?1, 2009. CrossRef
    20. Laszlo, B., Calderini, O., Binarova, P., Mattauch, M., Till, S., Kiegerl, S., Jonak, C., Pollaschek, C., Barker, P., Huskisson, N.S., Hirt, H., Heberle-Bors, E.: A MAP kinase is activated late in plant mitosis and becomes localized to the plane of cell division. 鈥?Plant Cell 11: 101鈥?13, 1999. CrossRef
    21. Lee, S.K., Kim, B.G., Kwon, T.R., Jeong, M.J., Park, S.R., Lee, J.W., Byun, M.O., Kwon, H.B., Matthews B.F., Hong, C.B., Park, S.C.: Overexpression of the mitogen-activated protein kinase gene / OsMAPK33 enhances sensitivity to salt stress in rice ( / Oryza sativa L.). 鈥?J. Biosci. 36: 139鈥?51, 2011. CrossRef
    22. Meldau, S., Ullman-Zeunert, L., Govind, G., Bartram, S., Baldwin, I.T.: MAPK dependent JA and SA signaling in / Nicotiana attenuata affects plant growth and fitness during competition with conspecifics. 鈥?BMC Plant Biol. 12: 213, 2012. CrossRef
    23. Menges, M., Doczi, R., Okresz, L., Morandini, P., Mizzi, L., Soloviev, M., Murray, J.A.H., Bogre L.: Comprehensive gene expression atlas for the / Arabidopsis MAPK kinase signaling pathways. New Phytol. 179: 643鈥?62. 2008. CrossRef
    24. Mishra, N.S., Tuteja, R., Tuteja, N.: Signaling through MAP kinase networks in plants. Arch. Biochem. Biophys. 452: 55鈥?8, 2006. CrossRef
    25. Nicole, M.C., Hamel, L.P., Morency, M.J., Beaudoin, N., Ellis, B.E., S茅guin, A.: MAP-ping genomic organization and organ-specific expression profiles of poplar MAP kinases and MAP kinase kinases. 鈥?BMC Genom. 7 (Suppl.): e223, 2006.
    26. Opdenakker, K., Remans, T., Vangronsveld, J., Cuypers, A.: Mitogen activated protein (MAP) kinases in plant metal stress: regulation and responses in comparison to other biotic and abiotic stresses. 鈥?Int. J. mol. Sci. 13: 7828鈥?853, 2012. CrossRef
    27. Pfaffl, M.W.: A new mathematical model for relative quantification in real time RT-PCR. 鈥?Nucl. Acids Res. 29(Suppl.): e45, 2001. CrossRef
    28. Pitzschke, A., Schikora, A., Hirt, H.: MAPK cascade signalling networks in plant defence. 鈥?Curr. Opin. Plant Biol. 12: 421鈥?26, 2009. CrossRef
    29. Ravindran, P.N., Nirmalbabu, K., Sivaraman, K. (ed): Turmeric: The Genus / Curcuma (Medicinal and Aromatic Plants Industrial Profiles). 鈥?CRC Press, Boca Raton 2007.
    30. Shi, J., An, H.L., Zhang, L., Gao, Z., Guo, X.Q.: / GhMPK7, a novel multiple stress-responsive cotton group C MAPK gene, has a role in broad-spectrum disease resistance and plant development. 鈥?Plant mol. Biol. 74: 1鈥?7, 2010. CrossRef
    31. Sinha, A.K., Jaggi, M., Raghuram, B., Tuteja, N.: Mitogenactivated protein kinase signaling in plants under abiotic stress. 鈥?Plant Signal. Behav. 6: 196鈥?03. 2011. CrossRef
    32. Suarez-Rodriguez, M.C., Petersen, M., Mundy, J.: Mitogenactivated protein kinase signalling in plants. 鈥?Annu. Rev. Plant Biol. 61: 621鈥?49, 2010. CrossRef
    33. Taj, G., Agarwal, P., Grant, M., Kumar, A.: MAPK machinery in plants: recognition and response to different stresses through multiple signal transduction pathways. 鈥?Plant Signal. Behav. 5: 1370鈥?378, 2010. CrossRef
    34. Tamura, K., Stecher, G., Filipski, A., Kumar, S.: / MEGA6: molecular evolutionary genetics analysis version 6.0. 鈥?Mol. Biol. Evol. 30: 2725鈥?729, 2013. CrossRef
    35. Voronin, V., Aionesei, T., Limmongkon, A., Barinova, I., Touraev, A., Lauriere, C., Coronado, M.J., Testillano, P.S., Risueno, M.C., Heberle-Bors, E., Wilson, C.: The MAP kinase kinase / NtMEK2 is involved in tobacco pollen germination. 鈥?FEBS Lett. 560: 86鈥?0. 2004. CrossRef
    36. Wang, J., Ding, H., Zhang, A., Ma, F., Cao, J., Jiang, M.: A novel mitogen-activated protein kinase gene in maize ( / Zea mays), / ZmMPK3, is involved in response to diverse environmental cues. 鈥?J. integr. Plant Biol. 52: 442鈥?52, 2010.
    37. Wu, T., Kong, X.P., Zong, X.J., Li, D.P., Li, D.Q.: Expression analysis of five maize MAP kinase genes in response to various abiotic stresses and signal molecules. 鈥?Mol. Biol. Rep. 38: 3967鈥?975, 2011. CrossRef
    38. Zhang, X., Cheng, T., Wang, G., Yan, Y., Xia, Q.: Cloning and evolutionary analysis of tobacco MAPK gene family. 鈥?Mol. Biol. Rep. 40: 1407鈥?415, 2013. CrossRef
    39. Zimmermann, P., Hirch-Hoffmann, M., Gennig, L., Gruissem, W.: / GENEVESTIGATOR. / Arabidopsis microarray database and analysis toolbox. 鈥?Plant Physiol. 136: 2621鈥?632, 2004. CrossRef
    40. Zong, X.J., Li, D.P., Gu, L.K., Li, D.Q., Liu, L.X., Hu, X.L.: Abscisic acid and hydrogen peroxide induce a novel maize group C MAP kinase gene, / ZmMPK7, which is responsible for the removal of reactive oxygen species. 鈥?Planta 229: 485鈥?95, 2009. CrossRef
  • 作者单位:S. Nanda (1)
    S. Nayak (1)
    R. K. Joshi (1)

    1. Centre of Biotechnology, Siksha O. Anusandhan University, Bhubaneswar, 751003, India
  • ISSN:1573-8264
文摘
Plant mitogen activated protein kinase (MAPK) cascades comprise a complex network playing a major role in regulating extracellular stimuli as well as developmental processes. The present study involves cloning four MAPKs (ClMPK1, 3, 4 and 5) from Curcuma longa. All four ClMPKs have fully canonical motifs of MAPK and each is represented by a single copy in the turmeric genome. The analysis of exon-intron junctions revealed conserved nature of ClMPKs across different plant groups. The RT-qPCR analysis showed their expression in mature plant tissues. The transcript analysis using the RT-qPCR shows that the four ClMPKs were differentially regulated by cold, salinity, and drought stresses. ClMPK4 showed a significant upregulation in the presence of NaCl, polyethylene glycol, and mannitol. The time-course expression analysis revealed a marked accumulation of ClMPK1 and ClMPK4 transcripts after mechanical wounding or applications of abscisic acid, H2O2, methyl jasmonate, and salicylic acid. ClMPK5 showed a unique and pronounced expression in response to hexavalent chromium (CrVI).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700