Homologous cloning, characterization and expression of a new halophyte phytochelatin synthase gene in Suaeda salsa
详细信息    查看全文
  • 作者:Ming Cong 丛明 ; Jianmin Zhao 赵建民
  • 关键词:Suaeda salsa ; halophyte ; phytochelatin synthase (PCS) ; homologous cloning ; heavy metal ; tissue distribution
  • 刊名:Chinese Journal of Oceanology and Limnology
  • 出版年:2016
  • 出版时间:September 2016
  • 年:2016
  • 卷:34
  • 期:5
  • 页码:1034-1043
  • 全文大小:435 KB
  • 参考文献:Ahmad M A, Gupta M. 2013. Exposure of Brassica juncea (L) to arsenic species in hydroponic medium: comparative analysis in accumulation and biochemical and transcriptional alterations. Environ. Sci. Pollut. Res., 20(11): 8141–8150, http://​dx.​doi.​org/​10.​1007/​s11356-013-1632-y.​CrossRef
    Altschul S F, Madden T L, Schäffer A A, Zhang J H, Zhang Z, Miller W, Lipman D J. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res., 25(17): 3389–3402, http://​dx.​doi.​org/​10.​1093/​nar/​25.​17.​3389.​CrossRef
    Boyce R, Chilana P, Rose T M. 2009. iCODEHOP: a new interactive program for designing COnsensus-DEgenerate hybrid oligonucleotide primers from multiply aligned protein sequences. Nucleic Acids Res., 37 (S2): W222–W228, http://​dx.​doi.​org/​10.​1093/​nar/​gkp379.​CrossRef
    Brulle F, Cocquerelle C, Wamalah A N, Morgan A J, Kille P, Leprêtre A, Vandenbulcke F. 2008. cDNA cloning and expression analysis of Eisenia fetida (Annelida: Oligochaeta) phytochelatin synthase under cadmium exposure. Ecotox icol. Environ. Safe ty, 71(1): 47–55, http://​dx.​doi.​org/​10.​1016/​j.​ecoenv.​2007.​10.​032.​CrossRef
    Cobbett C S. 1999. A family of phytochelatin synthase genes from plant, fungal and animal species. Trends in Plant Sci ence, 4(9): 335–337, http://​dx.​doi.​org/​10.​1016/​S1360-1385(99)01465-X.CrossRef
    Cong M, Lv J S, Liu X L, Zhao J M, Wu H F. 2013. Gene expression responses in Suaeda salsa after cadmium exposure. Springer Plus, 2 (1): 232, http://​dx.​doi.​org/​10.​1186/​2193-1801-2-232.​CrossRef
    Gawel J E, Ahner B A, Friedland A J, Morel F M M. 1996. Role for heavy metals in forest decline indicated by phytochelatin measurements. Nature, 381(6577): 64–65, http://​dx.​doi.​org/​10.​1038/​381064a0.​CrossRef
    Grill E, Löffler S, Winnacker E L, Zenk M H. 1989. Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc. Nat l. Acad. Sci. USA, 86(18): 6838–6842, http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​16594069.​CrossRef
    Heiss S, Wachter A, Bogs J, Cobbett C, Rausch T. 2003. Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure. J. Exp. Bot., 54(389): 1833–1839, http://​www.​ncbi.​nlm.​nih.​ gov/pubmed/12815036.CrossRef
    Hirata K, Tsujimoto Y, Namba T, Ohta T, Hirayanagi N, Miyasaka H, Zenk M H, Miyamoto K. 2001. Strong induction of phytochelatin synthesis by zinc in marine green alga, Dunaliella tertiolecta. J. Biosci. Bioeng., 92(1): 24–29, http://​dx.​doi.​org/​10.​1016/​S1389-1723(01)80193-6.CrossRef
    Inouhe M, Ito R, Ito S, Sasada N, Tohoyama H, Joho M. 2000. Azuki bean cells are hypersensitive to cadmium and do not synthesize phytochelatins. Plant Physiology, 123(3): 1029–1036, http://​dx.​doi.​org/​10.​1104/​pp.​123.​3.​1029.​CrossRef
    Lequeux H, Hermans C, Lutts S, Verbruggen N. 2010. Response to copper excess in Arabidopsis thaliana: impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiol. Biochem., 48(6): 673–682, http://​dx.​doi.​org/​10.​1016/​j.​plaphy.​2010.​05.​005.​CrossRef
    Liu X L, Yang C Y, Zhang L B, Li L Z, Liu S J, Yu J B, You L P, Zhou D, Xia C H, Zhao J M, Wu H F. 2011. Metabolic profiling of cadmium-induced effects in one pioneer intertidal halophyte Suaeda salsa by NMR-based metabolomics. Ecotoxicology, 20(6): 1422–1431, http://​dx.​doi.​org/​10.​1007/​s10646-011-0699-9.​CrossRef
    Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2 C T method. Methods, 25(4): 402–408, http://​dx.​doi.​ org/10.1006/meth.2001.1262.CrossRef
    Manier N, Brulle F, Le Curieux F, Vandenbulcke F, Deram A. 2012. Biomarker measurements in Trifolium repens and Eisenia fetida to assess the toxicity of soil contaminated with landfill leachate: a microcosm study. Ecotoxicol. Environ. Saf ety, 80: 339–348, http://​dx.​doi.​org/​10.​1016/​j.​ecoenv.​2012.​04.​002.​CrossRef
    Manousaki E, Kalogerakis N. 2011. Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Ind. Eng. Chem. Res., 50(2): 656–660, http://​dx.​doi.​org/​10.​1021/​ie100270x.​CrossRef
    Mao T Y, Dai M X, Peng S T, Li G L. 2009. Temporal-spatial variation trend analysis of heavy metals (Cu, Zn, Pb, Cd, Hg) in Bohai Bay in 10 Years. J. Tianjin Univ., (9): 817–825. (in Chinese with English abstract)
    Mendoza-Cózatl D G, Rodríguez-Zavala J S, Rodríguez-Enríquez S, Mendoza-Hernandez G, Briones-Gallardo R, Moreno-Sánchez R. 2006. Phytochelatin-cadmiumsulfide high-molecular-mass complexes of Euglena gracilis. FEBS J., 273(24): 5703–5713, http://​dx.​doi.​org/​10.​1111/​j.​1742-4658.​2006.​05558.​x.​CrossRef
    Nguyen-Deroche T L N, Caruso A, Le T T, Bui T V, Schoefs B, Tremblin G, Morant-Manceau A. 2012. Zinc affects differently growth, photosynthesis, antioxidant enzyme activities and phytochelatin synthase expression of four marine diatoms. Scientific World Journal, 2012: 982957, http://​dx.​doi.​org/​10.​1100/​2012/​982957.​CrossRef
    Pandey N, Singh G K. 2012. Studies on antioxidative enzymes induced by cadmium in pea plants (Pisum sativum). J. Environ. Biol., 33(2): 201–206, http://​www.​ncbi.​nlm.​nih.​ gov/pubmed/23033681.
    Ramos J, Naya L, Gay M, Abián J, Becana M. 2008. Functional characterization of an unusual phytochelatin synthase, LjPCS3, of Lotus japonicus. Plant Physiology, 148(1): 536–545, http://​dx.​doi.​org/​10.​1104/​pp.​108.​121715.​CrossRef
    Rea P A. 2006. Phytochelatin synthase, papain’s cousin, in stereo. Proc. Natl. Acad. Sci. USA, 103(3): 507–508, http://​dx.​doi.​org/​10.​1104/​pp.​104.​048579.​CrossRef
    Romanyuk N D, Rigden D J, Vatamaniuk O K, Lang A, Cahoon R E, Jez J M, Rea P A. 2006. Mutagenic definition of a papain-like catalytic triad, sufficiency of the N-terminal domain for single-site core catalytic enzyme acylation, and C-terminal domain for augmentative metal activation of a eukaryotic phytochelatin synthase. Plant Physiology, 141(3): 858–869, http://​www.​ncbi.​nlm.​nih.​ gov/pubmed/16714405.CrossRef
    Ruotolo R, Peracchi A, Bolchi A, Infusini G, Amoresano A, Ottonello S. 2004. Domain organization of phytochelatin synthase: functional properties of truncated enzyme species identified by limited proteolysis. J. Biol. Chem., 279 (15): 14686–14693, http://​dx.​doi.​org/​10.​1074/​jbc.​M314325200.​CrossRef
    Taji T, Komatsu K, Katori T, Kawasaki Y, Sakata Y, Tanaka S, Kobayashi M, Toyoda A, Seki M, Shinozaki K. 2010. Comparative genomic analysis of 1047 completely sequenced cDNAs from an Arabidopsis -related model halophyte, Thellungiella halophila. BMC Plant Biology, 10 (1): 261, http://​dx.​doi.​org/​10.​1186/​1471-2229-10-261.​CrossRef
    Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol., 24(8): 1596–1599, http://​dx.​doi.​org/​10.​1093/​molbev/​msm092.​CrossRef
    Tsuji N, Hirayanagi N, Okada M, Miyasaka H, Hirata K, Zenk M H, Miyamoto K. 2002. Enhancement of tolerance to heavy metals and oxidative stress in Dunaliella tertiolecta by Zn-induced phytochelatin synthesis. Biochem ical and Biophys ical Res earch Commun ications, 293(1): 653–659, http://​dx.​doi.​org/​10.​1016/​S0006-291X(02)00265-6.CrossRef
    Vatamaniuk O K, Mari S, Lu Y P, Rea P A. 1999. AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proc. Natl. Acad. Sci. USA, 96(12): 7110–7115, http://​www.​ncbi.​nlm.​nih.​gov/​pmc/​articles/​PMC22073/​pdf/​pq007110.​pdf.​CrossRef
    Vestergaard M, Matsumoto S, Nishikori S, Shiraki K, Hirata K, Takagi M. 2008. Chelation of cadmium ions by phytochelatin synthase: role of the cysteine-rich C-terminal. Anal ytical Sci ences, 24(2): 277–281, http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​18270423.​CrossRef
    Wang H C, Wu J S, Chia J C, Yang C C, Wu Y J, Juang R H. 2009. Phytochelatin synthase is regulated by protein phosphorylation at a threonine residue near its catalytic site. J. Agric. Food Chem., 57(16): 7348–7355, http://​dx.​doi.​org/​10.​1021/​jf9020152.​CrossRef
    Wu H F, Liu X L, Zhao J M, Yu J B. 2012. Toxicological responses in halophyte Suaeda salsa to mercury under environmentally relevant salinity. Ecotox icol. Environ. Safe ty, 85: 64–71, http://​dx.​doi.​org/​10.​1016/​j.​ecoenv.​2012.​03.​016.​CrossRef
    Xu J, Yin H X, Liu X J, Li X. 2010. Salt affects plant Cd-stress responses by modulating growth and Cd accumulation. Planta, 231(2): 449–459, http://​dx.​doi.​org/​10.​1007/​s00425-009-1070-8.​CrossRef
    Zhang X L. 2001. Investigation of pollution of Pb, Cd, Hg, As in sea water and deposit of Bohai Sea area. Heilongjiang Environ. J., 25(3): 87–90. (in Chinese with English abstract)
    Zhou M J, Yan T. 1997. Progress in marine eco-toxicology study in China. Res. Environ. Sci., 10(3): 1–6. (in Chinese with English abstract)
    Zhu M H, Ding Y S, Zheng D C, Tao P, Ji Y X, Cui Y, Gong W M, Ding D W. 2005. Accumulation and tolerance of Cu, Zn, Pb and Cd in plant Suaeda heteroptera Kitag in tideland. Marine Environmental Science, 24(2): 13–16, http://​europepmc.​org/​abstract/​CBA/​599367.​

  • 作者单位:Ming Cong 丛明 (1)
    Jianmin Zhao 赵建民 (1)
    Jiasen Lü 吕家森 (2)
    Zhiming Ren 任志明 (2)
    Huifeng Wu 吴惠丰 (1)

    1. Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai, 264003, China
    2. Biology School of Yantai University, Yantai, 264005, China
  • 刊物主题:Oceanography;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1993-5005
  • 卷排序:34
  • 文摘
    The halophyte Suaeda salsa can grow in heavy metal-polluted areas along intertidal zones having high salinity. Since phytochelatins can eff ectively chelate heavy metals, it was hypothesized that S. salsa possessed a phytochelatin synthase (PCS) gene. In the present study, the cDNA of PCS was obtained from S. salsa (designated as SsPCS) using homologous cloning and the rapid amplification of cDNA ends (RACE). A sequence analysis revealed that SsPCS consisted of 1 916 bp nucleotides, encoding a polypeptide of 492 amino acids with one phytochelatin domain and one phytochelatin C domain. A similarity analysis suggested that SsPCS shared up to a 58.6% identity with other PCS proteins and clustered with PCS proteins from eudicots. There was a new kind of metal ion sensor motif in its C-terminal domain. The SsPCS transcript was more highly expressed in elongated and fibered roots and stems (P<0.05) than in leaves. Lead and mercury exposure significantly enhanced the mRNA expression of SsPCS (P<0.05). To the best of our knowledge, SsPCS is the second PCS gene cloned from a halophyte, and it might contain a diff erent metal sensing capability than the first PCS from Thellungiella halophila. This study provided a new view of halophyte PCS genes in heavy metal tolerance. Keywords Suaeda salsa halophyte phytochelatin synthase (PCS) homologous cloning heavy metal tissue distribution

    © 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

    地址:北京市海淀区学院路29号 邮编:100083

    电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700