Stabilization of bipedal walking based on compliance control
详细信息    查看全文
  • 作者:Chengxu Zhou ; Zhibin Li ; Xin Wang ; Nikos Tsagarakis ; Darwin Caldwell
  • 刊名:Autonomous Robots
  • 出版年:2016
  • 出版时间:August 2016
  • 年:2016
  • 卷:40
  • 期:6
  • 页码:1041-1057
  • 全文大小:3,284 KB
  • 刊物类别:Computer Science
  • 刊物主题:Artificial Intelligence and Robotics
    Automation and Robotics
    Electronic and Computer Engineering
    Computer Imaging, Vision, Pattern Recognition and Graphics
    Mechanical Engineering
    Simulation and Modeling
  • 出版者:Springer Netherlands
  • ISSN:1573-7527
  • 卷排序:40
文摘
The embodiment of physical compliance in humanoid robots, inspired by biology, improves the robustness of locomotion in unknown environments. The mechanical implementation using elastic materials demands a further combination together with controlled compliance to make the intrinsic compliance more effective. We hereby present an active compliance control to stabilize the humanoid robots for standing and walking tasks. Our actively controlled compliance is achieved via admittance control using closed-loop feedback of the six axis force/torque sensors in the feet. The modeling and theoretical formulation are presented, followed by the simulation study. Further, the control algorithms were validated on a real humanoid robot COMAN with inherent compliance. A series of experimental comparisons were studied, including standing balancing against impacts, straight walking, and omni-directional walking, to demonstrate the necessity and the effectiveness of applying controlled compliance on the basis of physical elasticity to enhance compliant foot-ground interaction for the successful locomotion. All data from simulations and experiments related with the proposed controller and the performance are presented, analyzed, and discussed.KeywordsCompliance controlWalking stabilizationBipedal walking

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700