Global analysis of aberrant pre-mRNA splicing in glioblastoma using exon expression arrays
详细信息    查看全文
  • 作者:Hannah C Cheung (1) (2)
    Keith A Baggerly (3) (4)
    Spiridon Tsavachidis (3)
    Linda L Bachinski (5)
    Valerie L Neubauer (5)
    Tamara J Nixon (5)
    Kenneth D Aldape (4) (6)
    Gilbert J Cote (1) (4)
    Ralf Krahe (2) (4) (5)
  • 刊名:BMC Genomics
  • 出版年:2008
  • 出版时间:December 2008
  • 年:2008
  • 卷:9
  • 期:1
  • 全文大小:1839KB
  • 参考文献:1. Lopez AJ: Alternative splicing of pre-mRNA: developmental consequences and mechanisms of regulation. / Annu Rev Genet 1998, 32:279鈥?05. CrossRef
    2. Faustino NA, Cooper TA: Pre-mRNA splicing and human disease. / Genes Dev 2003,17(4):419鈥?37. CrossRef
    3. Johnson JM, Castle J, Garrett-Engele P, Kan Z, Loerch PM, Armour CD, Santos R, Schadt EE, Stoughton R, Shoemaker DD: Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. / Science 2003,302(5653):2141鈥?144. CrossRef
    4. Venables J: Alternative Splicing in Cancer. Newcastle upon Tyne, Transworld Research Network 2006.
    5. Venables JP: Aberrant and alternative splicing in cancer. / Cancer Res 2004,64(21):7647鈥?654. CrossRef
    6. Sampath J, Long PR, Shepard RL, Xia X, Devanarayan V, Sandusky GE, Perry WL 3rd, Dantzig AH, Williamson M, Rolfe M, Moore RE: Human SPF45, a splicing factor, has limited expression in normal tissues, is overexpressed in many tumors, and can confer a multidrug-resistant phenotype to cells. / Am J Pathol 2003,163(5):1781鈥?790. CrossRef
    7. He X, Ee PL, Coon JS, Beck WT: Alternative splicing of the multidrug resistance protein 1/ATP binding cassette transporter subfamily gene in ovarian cancer creates functional splice variants and is associated with increased expression of the splicing factors PTB and SRp20. / Clin Cancer Res 2004,10(14):4652鈥?660. CrossRef
    8. Kirschbaum-Slager N, Lopes GM, Galante PA, Riggins GJ, de Souza SJ: Splicing factors are differentially expressed in tumors. / Genet Mol Res 2004,3(4):512鈥?20.
    9. Zerbe LK, Pino I, Pio R, Cosper PF, Dwyer-Nield LD, Meyer AM, Port JD, Montuenga LM, Malkinson AM: Relative amounts of antagonistic splicing factors, hnRNP A1 and ASF/SF2, change during neoplastic lung growth: implications for pre-mRNA processing. / Mol Carcinog 2004,41(4):187鈥?96. CrossRef
    10. Cheung HC, Corley LJ, Fuller GN, McCutcheon IE, Cote GJ: Polypyrimidine tract binding protein and Notch1 are independently re-expressed in glioma. / Mod Pathol 2006,19(8):1034鈥?041.
    11. Karni R, de Stanchina E, Lowe SW, Sinha R, Mu D, Krainer AR: The gene encoding the splicing factor SF2/ASF is a proto-oncogene. / Nat Struct Mol Biol 2007,14(3):185鈥?93. CrossRef
    12. Schwerk C, Schulze-Osthoff K: Regulation of apoptosis by alternative pre-mRNA splicing. / Mol Cell 2005,19(1):1鈥?3. CrossRef
    13. Srebrow A, Kornblihtt AR: The connection between splicing and cancer. / J Cell Sci 2006,119(Pt 13):2635鈥?641. CrossRef
    14. Scheurle D, DeYoung MP, Binninger DM, Page H, Jahanzeb M, Narayanan R: Cancer gene discovery using digital differential display. / Cancer Res 2000,60(15):4037鈥?043.
    15. Baranova AV, Lobashev AV, Ivanov DV, Krukovskaya LL, Yankovsky NK, Kozlov AP: In silico screening for tumour-specific expressed sequences in human genome. / FEBS Lett 2001,508(1):143鈥?48. CrossRef
    16. Xie H, Zhu WY, Wasserman A, Grebinskiy V, Olson A, Mintz L: Computational analysis of alternative splicing using EST tissue information. / Genomics 2002,80(3):326鈥?30. CrossRef
    17. Wang Z, Lo HS, Yang H, Gere S, Hu Y, Buetow KH, Lee MP: Computational analysis and experimental validation of tumor-associated alternative RNA splicing in human cancer. / Cancer Res 2003,63(3):655鈥?57.
    18. Xu Q, Lee C: Discovery of novel splice forms and functional analysis of cancer-specific alternative splicing in human expressed sequences. / Nucleic Acids Res 2003,31(19):5635鈥?643. CrossRef
    19. Hui L, Zhang X, Wu X, Lin Z, Wang Q, Li Y, Hu G: Identification of alternatively spliced mRNA variants related to cancers by genome-wide ESTs alignment. / Oncogene 2004,23(17):3013鈥?023. CrossRef
    20. Kirschbaum-Slager N, Parmigiani RB, Camargo AA, de Souza SJ: Identification of human exons overexpressed in tumors through the use of genome and expressed sequence data. / Physiol Genomics 2005,21(3):423鈥?32. CrossRef
    21. Modrek B, Resch A, Grasso C, Lee C: Genome-wide detection of alternative splicing in expressed sequences of human genes. / Nucleic Acids Res 2001,29(13):2850鈥?859. CrossRef
    22. Yeo G, Holste D, Kreiman G, Burge CB: Variation in alternative splicing across human tissues. / Genome Biol 2004,5(10):R74. CrossRef
    23. Itoh K, Sakurai Y, Asou H, Umeda M: Differential expression of alternatively spliced neural cell adhesion molecule L1 isoforms during oligodendrocyte maturation. / J Neurosci Res 2000,60(5):579鈥?86. CrossRef
    24. Niswender CM, Jones CK, Conn PJ: New therapeutic frontiers for metabotropic glutamate receptors. / Curr Top Med Chem 2005,5(9):847鈥?57. CrossRef
    25. Sato M, Hutchinson DS, Bengtsson T, Floren A, Langel U, Horinouchi T, Evans BA, Summers RJ: Functional domains of the mouse beta3-adrenoceptor associated with differential G protein coupling. / J Pharmacol Exp Ther 2005,315(3):1354鈥?361. CrossRef
    26. Lan H, Durand CJ, Teeter MM, Neve KA: Structural determinants of pharmacological specificity between D(1) and D(2) dopamine receptors. / Mol Pharmacol 2006,69(1):185鈥?94.
    27. Urano Y, Iiduka M, Sugiyama A, Akiyama H, Uzawa K, Matsumoto G, Kawasaki Y, Tashiro F: Involvement of the mouse Prp19 gene in neuronal/astroglial cell fate decisions. / J Biol Chem 2006,281(11):7498鈥?514. CrossRef
    28. Kleihues P, Sobin LH: World Health Organization classification of tumors. / Cancer 2000,88(12):2887. CrossRef
    29. Gardina PJ, Clark TA, Shimada B, Staples MK, Yang Q, Veitch J, Schweitzer A, Awad T, Sugnet C, Dee S, Davies C, Williams A, Turpaz Y: Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array. / BMC Genomics 2006,7(1):325. CrossRef
    30. Bruno IG, Jin W, Cote GJ: Correction of aberrant FGFR1 alternative RNA splicing through targeting of intronic regulatory elements. / Hum Mol Genet 2004,13(20):2409鈥?420. CrossRef
    31. Carnemolla B, Castellani P, Ponassi M, Borsi L, Urbini S, Nicolo G, Dorcaratto A, Viale G, Winter G, Neri D, Zardi L: Identification of a glioblastoma-associated tenascin-C isoform by a high affinity recombinant antibody. / Am J Pathol 1999,154(5):1345鈥?352. CrossRef
    32. Minovitsky S, Gee SL, Schokrpur S, Dubchak I, Conboy JG: The splicing regulatory element, UGCAUG, is phylogenetically and spatially conserved in introns that flank tissue-specific alternative exons. / Nucleic Acids Res 2005,33(2):714鈥?24. CrossRef
    33. Zhang C, Li HR, Fan JB, Wang-Rodriguez J, Downs T, Fu XD, Zhang MQ: Profiling alternatively spliced mRNA isoforms for prostate cancer classification. / BMC Bioinformatics 2006, 7:202. CrossRef
    34. Carstens RP, Wagner EJ, Garcia-Blanco MA: An intronic splicing silencer causes skipping of the IIIb exon of fibroblast growth factor receptor 2 through involvement of polypyrimidine tract binding protein. / Mol Cell Biol 2000,20(19):7388鈥?400. CrossRef
    35. Faustino NA, Cooper TA: Identification of putative new splicing targets for ETR-3 using sequences identified by systematic evolution of ligands by exponential enrichment. / Mol Cell Biol 2005,25(3):879鈥?87. CrossRef
    36. Ponthier JL, Schluepen C, Chen W, Lersch RA, Gee SL, Hou VC, Lo AJ, Short SA, Chasis JA, Winkelmann JC, Conboy JG: Fox-2 splicing factor binds to a conserved intron motif to promote inclusion of protein 4.1R alternative exon 16. / J Biol Chem 2006,281(18):12468鈥?2474. CrossRef
    37. Loerke D, Wienisch M, Kochubey O, Klingauf J: Differential control of clathrin subunit dynamics measured with EW-FRAP microscopy. / Traffic 2005,6(10):918鈥?29. CrossRef
    38. Pfister KK, Shah PR, Hummerich H, Russ A, Cotton J, Annuar AA, King SM, Fisher EM: Genetic analysis of the cytoplasmic dynein subunit families. / PLoS Genet 2006,2(1):e1. CrossRef
    39. Gutmann DH, Geist RT, Wright DE, Snider WD: Expression of the neurofibromatosis 1 (NF1) isoforms in developing and adult rat tissues. / Cell Growth Differ 1995,6(3):315鈥?23.
    40. French PJ, Peeters J, Horsman S, Duijm E, Siccama I, van den Bent MJ, Luider TM, Kros JM, van der Spek P, Sillevis Smitt PA: Identification of differentially regulated splice variants and novel exons in glial brain tumors using exon expression arrays. / Cancer Res 2007,67(12):5635鈥?642. CrossRef
    41. Gupta S, Zink D, Korn B, Vingron M, Haas SA: Strengths and weaknesses of EST-based prediction of tissue-specific alternative splicing. / BMC Genomics 2004,5(1):72. CrossRef
    42. Blencowe BJ: Alternative splicing: new insights from global analyses. / Cell 2006,126(1):37鈥?7. CrossRef
    43. Ueba T, Kaspar B, Zhao X, Gage FH: Repression of human fibroblast growth factor 2 by a novel transcription factor. / J Biol Chem 1999,274(15):10382鈥?0387. CrossRef
    44. Takino T, Nakada M, Miyamori H, Yamashita J, Yamada KM, Sato H: CrkI adapter protein modulates cell migration and invasion in glioblastoma. / Cancer Res 2003,63(9):2335鈥?337.
    45. Cackowski FC, Xu L, Hu B, Cheng SY: Identification of two novel alternatively spliced Neuropilin-1 isoforms. / Genomics 2004,84(1):82鈥?4. CrossRef
    46. Li HR, Wang-Rodriguez J, Nair TM, Yeakley JM, Kwon YS, Bibikova M, Zheng C, Zhou L, Zhang K, Downs T, Fu XD, Fan JB: Two-dimensional transcriptome profiling: identification of messenger RNA isoform signatures in prostate cancer from archived paraffin-embedded cancer specimens. / Cancer Res 2006,66(8):4079鈥?088. CrossRef
    47. Cline MS, Blume J, Cawley S, Clark TA, Hu JS, Lu G, Salomonis N, Wang H, Williams A: ANOSVA: a statistical method for detecting splice variation from expression data. / Bioinformatics 2005, 21 Suppl 1:i107鈥?5. CrossRef
    48. Sellke T, Bayarri MJ, Berger J: Calibration of p-values for testing precise null hypotheses. / The American Statistician 2001, 55:62鈥?1. CrossRef
    49. Pounds S, Morris SW: Estimating the occurrence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p-values. / Bioinformatics 2003,19(10):1236鈥?242. CrossRef
  • 作者单位:Hannah C Cheung (1) (2)
    Keith A Baggerly (3) (4)
    Spiridon Tsavachidis (3)
    Linda L Bachinski (5)
    Valerie L Neubauer (5)
    Tamara J Nixon (5)
    Kenneth D Aldape (4) (6)
    Gilbert J Cote (1) (4)
    Ralf Krahe (2) (4) (5)

    1. Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas M. D. Anderson Cancer Center, 77030, Houston, TX, USA
    2. Graduate Program in Genes and Development, University of Texas at Houston Graduate School of Biomedical Sciences, 77030, Houston, TX, USA
    3. Department of Bioinformatics and Computational Biology, University of Texas M. D. Anderson Cancer Center, 77030, Houston, TX, USA
    4. Graduate Program in Human and Molecular Genetics, University of Texas at Houston Graduate School of Biomedical Sciences, 77030, Houston, TX, USA
    5. Department of Cancer Genetics, University of Texas M. D. Anderson Cancer Center, 77030, Houston, TX, USA
    6. Department of Pathology, University of Texas M. D. Anderson Cancer Center, 77030, Houston, TX, USA
文摘
Background Tumor-predominant splice isoforms were identified during comparative in silico sequence analysis of EST clones, suggesting that global aberrant alternative pre-mRNA splicing may be an epigenetic phenomenon in cancer. We used an exon expression array to perform an objective, genome-wide survey of glioma-specific splicing in 24 GBM and 12 nontumor brain samples. Validation studies were performed using RT-PCR on glioma cell lines, patient tumor and nontumor brain samples. Results In total, we confirmed 14 genes with glioma-specific splicing; seven were novel events identified by the exon expression array (A2BP1, BCAS1, CACNA1G, CLTA, KCNC2, SNCB, and TPD52L2). Our data indicate that large changes (> 5-fold) in alternative splicing are infrequent in gliomagenesis (< 3% of interrogated RefSeq entries). The lack of splicing changes may derive from the small number of splicing factors observed to be aberrantly expressed. Conclusion While we observed some tumor-specific alternative splicing, the number of genes showing exclusive tumor-specific isoforms was on the order of tens, rather than the hundreds suggested previously by in silico mining. Given the important role of alternative splicing in neural differentiation, there may be selective pressure to maintain a majority of splicing events in order to retain glial-like characteristics of the tumor cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700