Theoretical description of 2D-cluster formation of nonionic surfactants at the air/water interface
详细信息    查看全文
  • 作者:Yu. B. Vysotsky ; E. S. Kartashynska ; D. Vollhardt
  • 关键词:Amphiphilic monolayer ; Quantum chemical simulation ; Clusterization ; Nonionic surfactant ; Thermodynamic parameters
  • 刊名:Colloid & Polymer Science
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:293
  • 期:11
  • 页码:3065-3089
  • 全文大小:1,506 KB
  • 参考文献:1.Stefaniu C, Brezesinski G (2014) X-ray investigation of monolayers formed at the soft air/water interface. Curr Opin Colloid Interface Sci 19:216–227CrossRef
    2.Penfold J, Thomas RK (2014) Neutron reflectivity and small angle neutron scattering: an introduction and perspective on recent progress. Curr Opin Colloid Interface Sci 19:198–206CrossRef
    3.Jacquemain D, Wolf SG, Leveiller F, Deutsch M, Kjaier K, Als-Nielsen J, Lahav M, Leiserowitz L (1992) Two-dimensional crystallografy of amphiphilic molecules at the air-water interface. Angew Chem Int Ed Engl 31:130–152CrossRef
    4.Vollhardt D (2014) Brewster angle microscopy: a preferential method for mesoscopic characterization of monolayers at the air/water interface. Curr Opin Colloid Interface Sci 19:183–197CrossRef
    5.Cohen SH, Bray MT, Lightbody ML (1994) Atomic force microscopy. Scanning tunneling microscopy. Plenum Press, New-YorkCrossRef
    6.Tolstoy VP, Chernyshova IV, Skryshevsky VA (2003) Handbook of infrared spectroscopy of ultrathin films. Willey-interscience, New JerseyCrossRef
    7.Giner-Casares JJ, Brezesinski G, Mohwald H (2014) Langmuir monolayers as unic physical models. Curr Opin Colloid Interface Sci 19:176–182CrossRef
    8.Hiemenz PC (1997) Principles of colloid and surface chemistry. Marcel Dekker, Inc., New-York
    9.Olivera ON Jr (1992) Langmuir-Blodgett films—properties and possible applications. Bras J Phys 2:60–69
    10.Ramsden JJ (1997) Optical biosensors. J Mol Recognit 10:109–120CrossRef
    11.Samoylov AM, Samoylova TI, Pathirana ST, Globa LP (2002) Peptide biosensor for recognition of cross-species cell surface markers. J Mol Recognit 15:197–203CrossRef
    12.Holmberg K, Shah, DO, Schwuger, MJ, (ed) (2002) Handbook of surface and colloid chemistry. Willey, New-York
    13.Maran MC, Pinazo A, Perez L, Clapes P, Angelet M, Garcia MT, Vinardell MP, Infante MP (2004) “Green” amino acid-based surfactants. Green Chem 6:233–240CrossRef
    14.Schreiber F (2000) Structure and growth of self-assembling monolayers. Prog Surf Sci 65:151–256CrossRef
    15.Lee KJ, Lee Y, Shim I-K, Young J, Oh YS (2006) Direct syntethis and bonding origins of monolayer-protected silver nanocrystals from silver nitrate through in situ ligand exchange. J Colloid Interface Sci 304:92–97CrossRef
    16.Popescu DC, Smulders MMJ, Pichon BP, Chebotareva N, Kwak S-Y, van Assen OLJ, Sijbesma RP, DiMassi E, Sommerdijk NAJN (2007) Template adaptability is key in the oriental crystallization of CaCO3. J Am Chem Soc 129:14058–14067CrossRef
    17.Qin D, Xia Y, Xu B, Yang H, Zhu C, Whitesides GM (1999) Fabrication of ordered two-dimensional arrays of micro- and nanoparticles using patternal self-assembled monolayers as tamplates. Adv Mater 11:1433–1437CrossRef
    18.Kumar A, Biebuyk HA, Whitesides GM (1994) Patterning self-assembled monolayers: application in material science. Langmuir 10:1498–1511CrossRef
    19.Smith RK, Lowis PA, Weiss PS (2004) Patterning self-assembled monolayers. Prog Surf Sci 75:1–68CrossRef
    20.Ramanathan M, Shrestha LK, Mori T, Ji Q, Hill JP, Arigo K (2013) Amphiphile nanoarchitectonics: from basic physical chemistry to advanced applications. Phys Chem Chem Phys 15:10580–10611CrossRef
    21.Kaplan IG, Rodimova OV (1978) Intermolecular interactions Sov. Phys Usp 21:918–944CrossRef
    22.Tsuzuki S, Tanabe K (1991) Basis set effects on the intermolecular interaction energies of methane dimers obtained by the Moeller-Plesset perturbation theory calculation. J Phys Chem 95:2272–2278CrossRef
    23.Williams DE, Craycroft DJ (1987) On the basis set superposition error in the evaluation of water dimer interactions. J Phys Chem 91:6365–6366CrossRef
    24.Müller-Dethlefs K, Hobza P (2000) Noncovalent interactions: a challenge for experiment and theory. Chem Rev 100:143–167CrossRef
    25.Tsuzuki S, Honda K, Uchimaru T, Mikami M (2006) Estimated MP2 and CCSD(T) interaction energies of n-alkane dimers at the basis set limit: Comparison of the methods of Helgaker et al. and Feller. J Chem Phys 124:114304CrossRef
    26.Hobza P, Sÿponer J, Reschel T (1995) Density functional theory and molecular clusters. J Comput Chem 16:1315–1325CrossRef
    27.Sim F, St-Amant A, Papoi I, Salahub DR (1992) Gaussian density functional calculations on hydrogen-bonded systems. J Am Chem Soc 114:4391–4400CrossRef
    28.Laasonen K, Parinelo M, Car R, Lee C, Vanderbilt D (1993) Structures of small water clusters using gradient-corrected density functional theory. Chem Phys Lett 207:208–213CrossRef
    29.Novoa JJ, Sosa C (1995) Evaluation of the density functional approximation on the computation of hydrogen bond interactions. J Phys Chem 99:15837–15845CrossRef
    30.Simeon TM, Ratner MA, Schatz GC (2013) Nature of noncovalent interactions in catenane supramolecular complexes: calibrating the MM3 force field with ab initio, DFT, and SAPT methods. J Phys Chem A 117:7918–7927CrossRef
    31.Steffens S, Howeler H, Jodicke T, Oldendorf J, Rudert R, Haufe G, Galla H-J (2007) Temperature-dependent phase behavior and the crystal-forming nucleation process of ethyl 4-fluoro-2,3-dihydroxylate monolayers. Langmuir 23:1880–1887CrossRef
    32.Vysotsky YB, Fomina ES, Belyaeva EA, Fainerman VB, Vollhardt D, Miller R (2012) Quantum chemical analysis of the thermodynamics of 2D cluster formation of aliphatic amides at the air/water interface. J Phys Chem C 116:26358–26376CrossRef
    33.Dobbs KD, Dixon DA (1996) Reliable reaction enthalpies for neutral amide hydrolysis and the heat of formation for formamide. J Phys Chem 100:3965–3975CrossRef
    34.Kitano M, Kuchtsu K (1973) Molecular structure of acetamide as studied by gas electron diffraction. Bull Chem Soc Jpn 46:3048–3051CrossRef
    35.Fomina ES, Vysotsky YB, Vollhardt D, Fainerman VB, Miller R (2013) Quantum chemical analysis of the thermodynamics of 2D cluster formation of 2-hydroxycarboxylic acids at the air/water interface. Soft Matter 9:7601–7616CrossRef
    36.Vysotsky YB, Fomina ES, Belyaeva EA, Aksenenko EV, Vollhardt D, Miller R (2009) Quantum-chemical analysis of thermodynamics of two-dimensional cluster formation of α-amino acids at the air/water interface. J Phys Chem В 113:16557–16567CrossRef
    37.Pecul M, Rizzo A, Leszczynski J (2002) Vibrational Raman and Raman optical activity spectra of d-lactic acid, d-lactate, and d-glyceraldehyde: Ab initio calculations. J Phys Chem A 106:11008–11016CrossRef
    38.Godfrey PD, Firth S, Hatherley LD et al (1993) Millimeter-wave spectroscopy of biomolecules: alanine. J Am Chem Soc 115:9684–9691CrossRef
    39.Csaszar AG (1996) Conformers of gaseous α-alanine. J Phys Chem 100:3541–3551CrossRef
    40.Blanco S, Lesarri A, Lopez JC, Alonso J (2004) Gas-phase structure of alanine. J Am Chem Soc 126:11675–11683CrossRef
    41.Stepanian SG, Reva ID, Radchenko AD, Adamowicz L (1998) Conformational behavior of α-alanine. Matrix-isolation infrared and theoretical DFT and ab initio study. J Phys Chem A 102:4623–4629CrossRef
    42.Morpeth FF (ed) (1995) Preservation of surfactant formulation. Blackie Academic&Professional, New-York
    43.Reid BP, O’Loughlin MJ, Sparks RK (1985) Methane–methane isotropic interaction potential from total differential cross sections. J Chem Phys 83:5656–5662CrossRef
    44.Novoa JJ, Whangbo MH, Williams JM (1991) Interactions energies associated with short intermolecular contacts of C–H bonds. II. Ab initio computational study of the C–H⋅⋅⋅H–C interactions in methane dimer. J Chem Phys 94:4835–4841CrossRef
    45.Paton RS, Goodman JM (2009) Hydrogene bonding and pi-pi stacking: how relative are force fields? A critical evaluation of force field descriptions of nonbonded interactions. J Chem Inf Model 49:944–955CrossRef
    46.Dubecky M, Jurecka P, Derrian R, Hobza P, Otyepka M, Mitas L (2013) Quantum Monte Carlo methods describe noncovalent interactions with subchemical accuracy. J Chem Theory Comput 9:4287–4292CrossRef
    47.Monteiro NKV, Firme CL (2014) Hydrogen–hydrogen bonds in highly branched alkanes and in alkane complexes: a DFT, ab initio, QTAIM, and ELF study. J Phys Chem A 118:1730–1740CrossRef
    48.Wolstenholme DJ, Cameron TS (2006) Comparative study of weak interactions in molecular crystals: H-H bonds vs hydrogen bonds. J Phys Chem A 110:8970–8978CrossRef
    49.Matta CF, Hernandez-Trujillo J, Tang T-H, Bader RFW (2003) Hydrogen-hydrogen bonding: a stabilizing interaction in molecules and crystals. Chem Eur J 9:940–1951
    50.Vysotsky YB, Fomina ES, Belyaeva EA, Vollhardt D, Fainerman VB, Miller R (2012) Temperature effect on the monolayer formation of substituted alkanes at the air/water interface: a quantum chemical approach. J Phys Chem B 116:8996–9006CrossRef
    51.Wolstenholme DJ, Matta CF, Cameron TS (2007) Experimental and theoretical electron density study of a highly twisted polycyclic aromatic hydrocarbon: 4-methyl-[4]helicene. J Phys Chem A 111:8803–8813CrossRef
    52.Vysotsky YB, Bryantsev VS, Fainerman VB et al (2004) Transition state for aggregation and reorganization of normal fatty alcohols at the air/water interface. J Phys Chem B 108:8330–8337CrossRef
    53.Desiraju GR (2002) Hydrogen bridges in crystal engineering interactions without borders. Acc Chem Res 35:565–573CrossRef
    54.Marion A, Monard G, Ruiz-Lopez MF (2014) Water interactions with hydrophobic groups: assessment and recalibration of semiempirical molecular orbital methods. J Chem Phys 141:034106CrossRef
    55.Tong X, Cerny J, Muller-Dethlefs K, Dessent CEH (2008) Effect of noncovalent interactions on conformers of the n-butylbenzene monomer studied by mass analyzed threshold ionization spectroscopy and basis-set convergent ab initio computations. J Phys Chem A 112:5866–5871CrossRef
    56.Goursot A, Mineva T, Kevorkyantz R, Talbi D (2007) Interaction between n-alkane chaines: applicability of the empirically corrected density functional theory for van der Waals complexes. J Chem Theory Comput 3:755–763CrossRef
    57.Csonka GI, Angyan JC, Csonka GI (1997) The origin of the problems with the PM3 core repulsion function. J Mol Struct (Theochem) 393:31–38CrossRef
    58.Metzger TG, Ferguson DM (1997) A computational analysis of interaction energies in methane and neopentane dimer system. J Comput Chem 18:70–79CrossRef
    59.Mahlanen R, Pakkanen TA (2011) Potential energy studies on silane dimers. Chem Phys 382:121–126CrossRef
    60.Matta СF, Castillo N, Boyd RJ (2005) Characterization of a closed-shell fluorine-fluorine bonding interaction in aromatic compounds on the basis of the electron density. J Phys Chem A 109:3669–3681CrossRef
    61.Watkins EK, Jorgensen WL (2001) Perfluoroalkanes: conformational analysis and liquid-state properties from ab initio and Monte Carlo calculations. J Phys Chem A 105:4118–4125CrossRef
    62.Holt DB, Farmer BL, Macturk KS, Eby RK (1996) Fluoropolymer force derived from semiempirical molecular orbital calculations. Polymer 37:1847–1855CrossRef
    63.Biller MJ, Mecozzi S (2012) A high level computational study of the CH4/CF4 dimer: how does it compare with the CH4/CH4 and CF4/CF4 dimers? Mol Phys 110:377–387CrossRef
    64.Baba T, Takai K, Takagi T, Kanamori T (2013) Effect of perfluoroalkyl chain length on monolayer behavior of partially fluorinated oleic acid molecules at the air-water interface. Chem Phys Lipids 172–173:31–39CrossRef
    65.Eaton DF, Smart BE (1990) Are fluorocarbon chains “stiffer” than hydrocarbon chains? Dynamics of end-to-end cyclization in a C8F16 segment monitored by fluorescence. J Am Chem Soc 112:2821–2823CrossRef
    66.Zhao Y, Truhlar DG (2006) Assessment of model chemistries for noncovalent interactions. J Chem Theory Comput 2:1009–1018CrossRef
    67.Sedlak R, Janowski T, Pitonak M, Rezac J, Pulay P (2013) Accuracy of quantum chemical methods for large noncovalent complexes. J Chem Theory Comput 9:3364–3374CrossRef
    68.Rezac J, Hobza P (2014) Ab initio quantum mechanical description of noncovalent interactions at its limits: approaching the experimental dissociation energy of the HF dimer. J Chem Theory Comput 10:3066–3073CrossRef
    69.Grantier J, Pitonak M, Hobza P (2012) Accuracy of several wave function and density functional theory methods for description of noncovalent interaction of saturated and unsaturated hydrocarbon dimers. J Chem Theory Comput 8:2282–2292CrossRef
    70.Eshuis H, Furche F (2011) A parameter-free density functional that works for noncovalent interactions. J Phys Chem Lett 2:983–989CrossRef
    71.Wang L, Prezhdo OV (2014) Accurate and efficient quantum chemistry by locality of chemical interactions. J Phys Chem Lett 5:4317–4317CrossRef
    72.Riley KE, Pitonak M, Jurecka P, Hobza P (2010) Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theoties. Chem Rev 110:5023–5063CrossRef
    73.Brandenburg JG, Hochheim M, Bredow T, Grimme S (2014) Low-cost quantum chemical methods for noncovalent interactions. J Phys Chem Lett 5:4275–4284CrossRef
    74.Hechinger M, Leonard K, Marquardt W (2012) What is wrong with quantitative structure–property relations mode based on three-dimensional descriptors? J Chem Inf Model 52:1984–1993CrossRef
    75.Benjamin L (1992) Theoretical study of the water/1,2-dichloroethane interface: structure, dynamics, and conformational equilibria at the liquid-liquid interface. J Chem Phys 97:1432–1445CrossRef
    76.Shushkov PG, Tzvetanov SA, Ivanova AN, Tadjer AV (2008) Dielectric properties tangential to the interface in model insoluble monolayers; theoretical assessment. Langmuir 24:4615–4624CrossRef
    77.Alder BJ, Wainwright TE (1957) Phase transition for a hard sphere system. J Chem Phys 27:1208–1209CrossRef
    78.Rapaport DC (1988) Molecular-dynamics study of Rayleigh-Benard convection. Phys Rev Lett 24:2480–2483CrossRef
    79.Mareschal M, Mansour M, Puhl A, Kestemont E (1988) Molecular dynamics versus hydrodynamics in two-dimensional Rayleigh-Benard system. Phys Rev Lett 61:2550–2553CrossRef
    80.Rapaport DC, Clementi E (1986) Eddy formation in obstructed fluid flow: a molecular-dynamics study. Phys Rev Lett 57:695–698CrossRef
    81.Levesque D, Verlet L (1970) Computer “experiments” on classical fluids. III. Time-dependent self-correlation functions. Phys Rev A 2:2514–2528CrossRef
    82.Alley WE, Alder BJ (1983) Generalized transport coefficients for hard spheres. Phys Rev A 27:3158–3173CrossRef
    83.Bareman JP, Klein ML (1990) Collective tilt behavior in dense substrate-supported monolayers of long-chain molecules. A molecular dynamics study. J Phys Chem 94:5202–5205CrossRef
    84.Bresme F, Faraudo J (2004) Computer simulation studies of Newton black films. Langmuir 20:5127–5137CrossRef
    85.Tran DNH, Prime EL, Plazzer M, Loung AHM, Yiapanis G, Christofferson AJ, Yarovsky I, Qiao GG, Solomon DH (2013) Molecular interactions behind the synergistic effect in mixed monolayers of 1-octadecanol and ethylene glycol monooctadecyl ether. J Phys Chem B 117:3603–3612CrossRef
    86.Tarek M, Bandyopadhyay S, Klein ML (1998) Molecular dynamics studies of aqueous surfactants systems. J Mol Liq 78:1–6CrossRef
    87.Ghatee MH, Ghanavati F, Bahrami M, Zolghadr AR (2013) Molecular dynamics simulation and experimental approach to the temperature dependent surface and bulk properties of hexanoic acid. Ind Eng Chem Res 52:3334–3341CrossRef
    88.Urbina-Villalba G, Landrove RM, Guaregua JA (1997) Molecular dynamics simulation of the interfacial behavior of a heptane/water system in the presence of nonylphenol triethoxylated surfactants. 1. Surface energy, surface entropy, and interaction energies as a function of temperature and surfactant concent. Langmuir 13:1644–1652CrossRef
    89.Siepman JI, McDonald IR (1993) Domain formation and system-size dependence in simulations of self-assembled monolayers. Langmuir 9:2351–2355CrossRef
    90.Jurecka P, Sponer J, Cerny J, Hobza P (2006) Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. Phys Chem Chem Phys 8:1985–1993CrossRef
    91.Jalkanen J-P, Pakkanen TA, Yang Y, Rowley RL (2003) Interaction energy surfaces of small hydrocarbon molecules. J Chem Phys 118:5474–5483CrossRef
    92.Yang C, Sun H (2014) Surface-bulk partition of surfactants predicted by molecular dynamics simulations. J Phys Chem B 118:10695–10703CrossRef
    93.LeBard DN, Levine BG, Mertmann P, Barr SA, Jusufi A, Sanders S, Klein ML, Panagiotopoulos AZ (2012) Self-assembly of coarse-grained ionic surfactants accelerated by graphic processing units. Soft Matter 8:2385–2397CrossRef
    94.Ptpich AM, Sheng Y, Wang W, Biswas ME, Chen P (2009) Tension at the surface: which phase is more important, liquid or vapor. PLoS ONE 4, e8281CrossRef
    95.Xu J, Zhang Y, Wang P, Xie Z, Yao Y, Yan Y, Zhang J (2013) Effect of surfactant headgroups on the oil/water interface: an interfacial tension measurement and simulation study. J Mol Struct 1052:50–56CrossRef
    96.Yoneya M, Aoki KM, Tale Y, Yokogame H (2004) Molecular dynamics simulations of liquid crystal molecules at an air-water interface. Mol Cryst Liq Cryst 413:161–169CrossRef
    97.Pang J, Wang Y, Xu G, Han T, Lv X, Zhang J (2011) Molecular dynamics simulations of SDS, DTAB, and C12E8 monolayers adsorbed at the air/water surface in the presence of DSEP. J Phys Chem B 115:2518–2526CrossRef
    98.Chanda J, Bandyopadhyay S (2006) Molecular dynamic study of surfactant monolayers adsorbed at the oil/water and air/water interface. J Phys Chem B 110:23482–23488CrossRef
    99.van Buuren AR, Marrink S-J, Berendsen HJC (1993) A molecular dynamics study of the decane-water interface. J Phys Chem 97:9206–9212CrossRef
    100.Gupta A, Chauhan A, Kopelevich DI (2008) Molecular modelling of surfactant covered oil–water interfaces; dynamics, microstructure, and barrier for mass transport. J Chem Phys 128:234709CrossRef
    101.Kurtz RE, Toney MF, Pople JA, Lin B, Meron M, Majensky J, Lange A, Fuller GG (2008) Langmuir monolayers of straight-chain and branched hexadecanol and eicosanol mixtures. Langmuir 24:14005–14014CrossRef
    102.Dai Y, Evans IS (2001) Molecular dynamics simulations of template-assisted nucleation: alcohol monolayers at the air-water interface and ice formation. J Phys Chem B 105:10831–10837CrossRef
    103.Vollhardt D, Fainerman VB (2010) Characterisation of phase transition in adsorbed monolayers at the air/water interface. Adv Coll Interface Sci 154:1–19CrossRef
    104.Fomina ES, Vysotsky YB, Belyaeva EA, Vollhardt D, Fainerman VB, Miller R (2014) On hexagonal orientation of fatty alcohols in monolayers at the air/water interface: quantum-chemical approach. J Phys Chem C 118:4122–4130CrossRef
    105.Henry DJ, Dewan VI, Prime EL, Qiao GG, Solomon DH, Yarovsky I (2010) Monolayer structure and evaporation resistance: a molecular dynamics study of octadecanol on water. J Phys Chem B 114:3869–3875CrossRef
    106.Chen M, Lu X, Hou Q, Zhu Y, Zhou H (2014) Temperature-dependent phase transition and desorption free energy of sodium dodecyl sulphate at the water/vapor interface: approaches fron molecular dynamics simulations. Langmuir 30:10600–10607CrossRef
    107.Shi W-X, Guo H-X (2010) Structure, interfacial properties, and dynamics of sodium alkyl sulphate type surfactant monolayer at the water/trichloroethylene interface: a molecular dynamics simulation study. J Phys Chem B 114:6365–6376CrossRef
    108.Tarek M, Tobias DJ, Klein ML (1995) Molecular dynamics simulation of tetradecyltrimethylammonium bromide monolayers at the air/water interface. J Phys Chem 99:1393–1402CrossRef
    109.Matsubara H, Onohara A, Imai Y, Shimamoto K, Takiue T, Aratono M (2010) Effect of temperature and counterion on adsorption of imidazolium ionic liquids at air–water interface. Colloids Surf A Physicochem Eng Asp 370:113–119CrossRef
    110.Rodriguez J, Laria D (2007) Surface behavior of N-dodecylimidazole at air/water interfaces. J Phys Chem C 111:908–915CrossRef
    111.McMullen RL, Kelty SP (2007) Molecular dynamic simulations of eicosanoic acid and 18-methyleicasonoic acid landmuir monolayers. J Phys Chem B 111:10849–10852CrossRef
    112.Plazzer MB, Henry DJ, Yiapanis G, Yarovsky I (2011) Comparative study of commonly used molecular dynamics force fields for modelling organic monolayers on water. J Phys Chem B 115:3964–3971CrossRef
    113.Karaborni S, Smit B (1996) Computer simulations of surfactant structures. Curr Opin Colloid Interface Sci 1:411–415CrossRef
    114.Shi L, Tummala NR, Striolo A (2010) C12E6 and SDS surfactants simulated at the vacuum-water interface. Langmuir 26:5462–5474CrossRef
    115.Zhang L, Ren T, Wu P, Shen J-W, Zhang W, Wang X (2014) Understanding the structure of hydrophobic surfactants at the air/water interface from molecular level. Langmuir 30:13815–13822CrossRef
    116.Prigogine I, Rice SA, Knobler CM (1990) Recent development in the study of monolayers at the air-water interface. Adv Chem Phys 77:397–449
    117.Bandyopadhyay S, Chanda J (2003) Monolayer of monododecyl diethylene glycol surfactants adsorbed at the air/water interface: a molecular dynamic study. Langmuir 19:10443–10448CrossRef
    118.Chanda J, Bandyopadhyay S (2005) Molecular dynamics study of a surfactant monolayer adsorbed at the air/water interface. J Chem Theory Comput 1:963–971CrossRef
    119.Kuhn H, Rehage H (1999) Molecular dynamics computer simulations of surfactant monolayers: monododecyl pentaethylene glycol at the surface between air and water. J Phys Chem 103:8493–8501CrossRef
    120.Kuhn H, Rehage H (2000) Molecular orientation of monododecyl pentaethylene glycol (C12E5) surfactants at infinite dilution at the air/water interface. A molecular dynamics computer simulation study. Phys Chem Chem Phys 2:1023–1028CrossRef
    121.Wu D, Yang X (2012) Coarse-grained molecular simulation of self-assembly for nonionic surfactants on graphene nanostructures. J Phys Chem B 116:12048–12056CrossRef
    122.Srinivas G, Nielsen SO, Moor PB, Klein ML (2006) Molecular dynamics simulations of surfactant self-organization at a solid–liquid interface. J Am Chem Soc 128:848–853CrossRef
    123.Yiapanis G, Christofferson AJ, Plazzer M, Weir MP, Prime EL, Qiao GG, Solomon DH, Yarovsky I (2013) Molecular mecanism of stabilization of thin films for improved water evaporation protection. Langmuir 29:14451–14459CrossRef
    124.Kartashynska ES, Vysotsky YB, Belyaeva EA, Fainerman VB, Vollhardt D, Miller R (2014) Quantum-chemical analysis of hexagonal crystalline monolayers of ethoxylated nonionic surfactants at the air/water interface. Phys Chem Chem Phys 16:25129–25142CrossRef
    125.Shelley MJ, Sprik M, Shelley JC (2000) Pattern formation in a self-assembled soap monolayer on the surface of water: a computer simulation study. Langmuir 16:626–630CrossRef
    126.Dominguez H, Rivera M (2005) Mixtures of sodium dedecyl sulphate/decanol at the air/water interface by computer simulations. Langmuir 21:7257–7262CrossRef
    127.Hall A, Rog T, Karttunen M, Vattulainen I (2010) Role of glycolipids in lipid rafts: a view through atomistic molecular-dynamics simulations with galactosylceramide. J Phys Chem B 114:7797–9807CrossRef
    128.Magarkar A, Rog T, Bunker A (2014) Molecular dynamics simulation of inverse-phosphocholine lipids. J Phys Chem C 118:19444–19449CrossRef
    129.Stepnienski M, Pasenkiewicz-Gierula M, Rog T, Danne R, Orlowski A, Karttunen M, Urtti A, Yliperttula M, Vuorimaa E, Bunker A (2011) Study of PEGylated lipid layers as a model for PEGylated liposome surfaces: molecular dynamics simulation and langmuir monolayer studies. Langmuir 27:7788–7798CrossRef
    130.Lauw Y, Kovalenko A, Stepanova M (2008) Phase behavior of amphiphilic lipid molecules at air-water interfaces: an off-lattice self-consistent-field modeling. J Phys Chem B 112:2119–2127CrossRef
    131.Marrink SJ, de Vries AH, Mark AE (2004) Coarse grained model for semiquantitative lipid simulations. J Phys Chem B 108:750–760CrossRef
    132.Howes AJ, Radke CJ (2003) Monte Carlo simulations of Lennard-Jones nonionic surfactant adsorption at the liquid/vapor interface. Langmuir 23:1835–1844CrossRef
    133.Jedlovszky P, Partay LB (2007) Adsorption of octyl cyanide at the free water surface as studied by Monte Carlo simulation. J Phys Chem B 111:5885–5895CrossRef
    134.Selinger JV, Selinger RLB (1995) Theory of chiral defects in Langmuir monolayers. Phys Rev E 51:860–863CrossRef
    135.Opps SB, Yang B, Gray CG, Sullivan DE (2001) Monte Carlo studies at model Langmuir monolayers. Phys Rev E 63:602–612
    136.Markutsya S, Subramaniam S, Vigil RD, Fox RO (2008) On Brownian dynamics simulation of nanoparticle aggregation. Ind Eng Chem Res 47:3338–3345CrossRef
    137.Bos MTA, van Opheusden JHJ (1996) Brownian dynamics simulation of gelation and aging in interacting colloidal systems. Phys Rev E 53:5044–5050CrossRef
    138.Lodge JFM, Heyes DM (1997) Brownian dynamics simulations of Lennard-Jones gas/liquid phase separation and its relevance to gel formation. J Chem Soc Faraday Trans 93:437–448CrossRef
    139.Moultos O, Gergidis LN, Vlahos C (2010) Brownian dynamics simulations on self-assembly behavior of H-shaped copolymers and terpolymers. Macromolecules 43:6903–6911CrossRef
    140.Lyulin AV, Davies GR, Adolf DB (2000) Brownian dynamics simulations of dendrimers under shear flow. Macromolecules 33:3294–3304CrossRef
    141.Suman B, Kumar S (2007) Adsorption of charged dendrimers: a Brownian dynamics study. J Phys Chem B 111:8728–8739CrossRef
    142.Muller M, Katsov K, Schick M (2006) Biological and synthetic membranes: what can be learned from a coarse-grained description? Phys Rep 434:113–176CrossRef
    143.Edwards SF (1965) The statistical mechanics of polymers with excluded volume. Proc Phys Soc Lond 85:613–624CrossRef
    144.Matsen MW, Schick M (1994) Stable and unstable phases of a diblock copolymer melt. Phys Rev Lett 72:2660–2663CrossRef
    145.Lee JY, Shou Z, Balazs AC (2003) Modeling the self-assembly of copolymer-nanoparticle mixtures confined between solid surfaces. Phys Rev Lett 91:136103CrossRef
    146.Claessens MMAE, Van Oort BF, Leermakers FAM, Hoekstra FA, Cohen Stuart MA (2004) Charged lipid vesicles: effects of salts on bending rigidity, stability, and size. Biophys J 87:3882–3893CrossRef
    147.Katsov K, Müller M, Schick M (2006) Field theoretic study of bilayer membrane fusion: II. Mechanism of a stalk-hole complex. Biophys J 90:915–926CrossRef
    148.Vysotsky YB, Belyaeva EA, Fomina ES, Vollhardt D, Fainerman VB, Miller R (2014) The quantum-chemical approach to calculations of thermodynamic and structural parameters of formation of fatty acid monolayers with hexagonal packing at the air/water interface. Phys Chem Chem Phys 16:3187–3199CrossRef
    149.Vysotsky YB, Belyaeva EA, Fomina ES, Vollhardt D, Fainerman VB, Miller R (2012) Thermodynamics of the clusterization process of trans-isomers of unsaturated fatty acids at the air/water interface. J Phys Chem B 116:2173–2282CrossRef
    150.Durbin MK, Malik A, Ghaskadvi R, Shih MC, Zschack P, Dutta P (1994) X-ray diffraction study of a recently identified phase transition in fatty acid Langmuir monolayers. J Phys Chem 98:1753–1755CrossRef
    151.Vollhardt D (2007) Effect of unsaturation in fatty acids on the main characteristics of Langmuir monolayers. J Phys Chem C 111:6805–6812CrossRef
    152.Hoogerbrugge PJ, Koelman JMVA (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett 19:155–160CrossRef
    153.Ginzburg VV, Chang K, Jog PK, Argenton AB, Rakesh L (2011) Modelling the interfacial tension in oil–water-nonionic surfactant mixtures using dissipative particle dynamics and self-consistent field theory. J Phys Chem B 115:4654–4661CrossRef
    154.Lin Y-L, Wu M-Z, Sheng Y-J, Tsao H-K (2012) Effects of molecular architectures and solvophobic additions on the aggregative properties of polymeric surfactants. J Chem Phys 136:104905CrossRef
    155.Kranenburg M, Venturoli M, Smit B (2003) Phase behavior and induced interdigitation in bilayers studied with dissipative particle dynamics. J Phys Chem B 107:11491–11501CrossRef
    156.Shillcock JC, Lipowsky R (2002) Equilibrium structure and lateral stress distribution of amphiphilic bilayers from dissipative particle dynamics simulations. J Chem Phys 117:5048–5061CrossRef
    157.Wang Z, Li Y, Guo Y, Zhang H (2013) Investigation of the interfacial properties of surfactants with different structures at the oil/water interface using dissipative particle dynamics. J Dispers Sci Technol 34:1020–1028CrossRef
    158.Yamamoto S, Maruyama Y, Hyodo S (2002) Dissipative particle dynamics study of spontaneous vesicle formation of amphiphilic molecules. J Chem Phys 116:5842–5849CrossRef
    159.Noro MG, Meneghini F, Warren PB (2009) Application of dissipative particle dynamics to materials physics problems in polymer and surfactant science. ACS Symp Ser 861:242–257CrossRef
    160.Rekvig L, Hafskjold B, Smit B (2004) Chain length dependencies of the bending modulus of surfactant monolayers. Phys Rev Lett 92:116101CrossRef
    161.Vishnyakov A, Lee M-T, Neimark AV (2013) Prediction of the critical micelle concentration of nonionic surfactants by dissipative particle dynamics simulation. J Phys Chem Lett 4:797–802CrossRef
    162.Pool R, Bolhuis PG (2006) Can purely repulsive potentials predict micelle formation correctly? Phys Chem Chem Phys 8:941–948CrossRef
    163.Groot RD (2000) Mesoscopic simulation of polymer-surfactant aggregation. Langmuir 16:7493–7502CrossRef
    164.Li X, Pivkin IV, Liang H, Karniadakis GE (2009) Shape transformatios of membrane vesicles from amphiphilic triblock copolymers: a dissipative particle dynamics simulation study. Macromolecules 42:3195–3200CrossRef
    165.Li Z, Dormidontova EE (2010) Kinetics of diblock copolymer micellization by dissipative particle dynamics. Macromolecules 43:3521–3531CrossRef
    166.Groot RD, Warren PB (1997) Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys 107:4423–4435CrossRef
    167.Wijmans CM, Smit B, Groot RD (2001) Phase behavior of monomeric mixtures and polymer solutions with soft interaction potentials. J Chem Phys 114:7644–7654CrossRef
    168.Walther A, Muller AHE (2013) Janus particles: synthesis, self-assembly, physical properties, and applications. Chem Rev 113:5194–5261CrossRef
    169.Maiti A, McGrother S (2004) Bead-bead interaction parameters in dissipative particle dynamics: relation to bead-size, solubility parameter, and surafce tension. J Chem Phys 120:1594–1601CrossRef
    170.Ortiz V, Nielsen SO, Discher DE, Klein ML, Lipowsky R, Shillcock J (2005) Dissipative particle dynamics simulations of polymarsomes. J Phys Chem B 109:17708–17714CrossRef
    171.Vollhardt D, Fainerman VB, Emrich G (2000) Dynamic and equilibrium surface pressure of adsorbed dodecanol monolayers at the Air/water interface. J Phys Chem B 104:8536–8543CrossRef
    172.Dutta P (1997) Studies of monolayers using synchrotron X-ray diffraction. Curr Opin Solid Mater Sci 2:557–562CrossRef
    173.Vysotsky YuB, Kartashynska ES, Belyaeva EA, Vollhardt D, Fainerman VB, Miller R. Quantization of the Molecular Tilt Angle of Crystalline Amphiphile Monolayers with Respect to the Air/Water Interface. doi: 10.​1021/​jp5130298
    174.Bell GR, Bain CD, Li ZX et al (1997) Structure of a monolayer of hexadecyltrimethylammonium p-tosylate at the air–water interface. J Am Chem Soc 119:10227–10228CrossRef
    175.Vysotsky YB, Bryantsev VS, Fainerman VB, Vollhardt D, Miller R (2002) Quantum chemical semi-empirical approach to the thermodynamic characteristics of oligomers and large aggregates of alcohols at the water/air interface. Colloids Surf A Physicochem Eng Asp 209:1–14CrossRef
    176.Klamt A, Schuurmann G (1993) COSMO—a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2:799–805CrossRef
    177.Andersson MP, Jensen JH, Stipp SLS (2013) Predicting pKa for proteins using COSMO-RS. Peer J 1, e198CrossRef
    178.Andersson MP, Olsson MHM, Stipp SLL (2014) Predicting the pKa and stability of organic acids and bases at the oil–water interface. Langmuir 30:6437–6445CrossRef
    179.Andersson MP, Bennetzen MV, Klamt A, Stipp SLS (2014) First-principles prediction of liquid/liquid interfacial tension. J Chem Theory Comput 10:3401–3408CrossRef
    180.Goss K-U (2009) Predicting adsorption of organic chemicals at the air-water interface. J Phys Chem A 113:12256–12259CrossRef
    181.Kraack H, Ocko BM, Pershan PS, Sloutskin E, Tamam L, Deutsch M (2004) The structure and phase diagram of Langmuir films of alcohols on mercury. Langmuir 20:5386–5395CrossRef
    182.Chernyshova IV, Ponnurangam S, Somasundaran P (2011) Adsorption of fatty acids on ion (hydr)oxides from aqueous solutions. Langmuir 27:10007–10018CrossRef
    183.Minkin VI, Simkin BY, Minyaev RM (1997) The theory of the molecular structure. Phoenix, Rostov-na-Donu (in Russian)
    184.Kaplan IG, Rodimova OV (1978) Intermolecular Interactions. Sov Phys Usp 21:918–943CrossRef
    185.Tsuzuki S, Tanabe K (1991) Basis set on the intermolecular interaction energies of methane dimers obtained by the Møller-Plesset perturbation theory calculation. J Phys Chem 95:2272–2278CrossRef
    186.Williams DE, Craycroft DJ (1987) Nonbonded H···H repulsion energy from ab initio SCF calculations of methane, ammonia, water, and methanol dimers. J Phys Chem 91:6365–6373CrossRef
    187.Vysotsky YB, Bryantsev VS, Fainerman VB (2002) Quantum chemical analysis of thermodynamics of the two-dimensional cluster formation at the air/water interface. Phys Chem B 106:121–131CrossRef
    188.Boyd GE (1958) Energy relations in monolayer formation: the spreading of long-chain fatty acids on aqueous surfaces. J Phys Chem 62:536–541CrossRef
    189.Broniatowski M (2009) Long-chain alkyl thiols in Langmuir monolaeyrs. J Colloid Interface Sci 337:183–190CrossRef
    190.Wang J-L, Leveiller F, Jacquemain D et al (1994) Two-dimensional structures of crystalline self-aggregates of amphiphilic alcohols at the air-water interface as studied by grazing incidence synchrotron X-ray diffraction and lattice energy calculations. J Am Chem Soc 116:1192–1204CrossRef
    191.Hobza P (1997) Accurate ab initio calculations on large van der Waals clusters. Annu Rep Prog Chem Sect C Phys Chem 93:257–287CrossRef
    192.Ferreira ML, Sierra MB, Morini MA, Schulz PC (2006) Computational study of the structure and behavior of aqueous mixed system sodium unsaturated carboxylate-dodecyltrimethyl ammonium bromide. J Phys Chem B 110:17600–17606CrossRef
    193.Dynarowicz-Latka P, Perez-Moralez M, Monoz E, Broniatowski M, Martin-Romero MT, Camacho L (2006) Structural investigation of Langmuir and Langmuir-Blodgett monolayers of semifluorinated alkanes. J Phys Chem B 110:6095–6100CrossRef
    194.Dai L (2004) Intelligent Macromolecules for Smart Devices: from Materials Synthesis to Device Applications. Springer, London
    195.Lee YS (2008) Self-assembly and nanotechnology a force balance approach. John Wiley & Sons, Inc., Publication, OhioCrossRef
    196.Vysotsky YB, Belyaeva EA, Fainerman VB, Aksenenko EV, Vollhardt D, Miller R (2007) Quantum chemical analysis of the thermodynamics of 2-dimensional cluster formation of alkylamines at the air/water interface. J Phys Chem C 11:15342–15349CrossRef
    197.Wiberg KB, Murcko MA (1987) Nonbonded interactions. 1. Anisotropic hydrogen-hydrogen interactions. J Comput Chem 8:1124–1130CrossRef
    198.Vysotsky YB, Muratov DV, Boldyreva FL, Fainerman VB, Vollhardt D, Miller R (2006) Quantum chemical analysis of the thermodynamics of 2D cluster formation of n-carboxylic acids at the air/water interface. J Phys Chem B 110:4717–4730CrossRef
    199.Vysotsky YB, Bryantsev VS, Fainerman VB, Vollhardt D, Miller R (2002) Quantum chemical analysis of thermodynamics of the two-dimensional cluster formation at the air/water interface. J Phys Chem B 106:121–131CrossRef
    200.VysotskyYuB BVS, Fainerman VB, Vollhardt D (2002) Quantum Chemical Analysis of Thermodynamics of the 2D Cluster Formation of odd n-alcohols at the Air/Water Interface. J Phys Chem B 106:11285–11294CrossRef
    201.Vysotsky YB, Belyaeva EA, Fainerman VB, Vollhardt D, Miller R (2007) Quantum chemical analysis of thermodynamics of 2D cluster formation of n-thioalcohols at the air/water interface. J Phys Chem C 111:5374–5381CrossRef
    202.Vollhardt D, Fainerman VB (2010) Characterisation of phase transition in adsorbed monolayers at the air/water interface. Adv Colloid Interface Sci 154:1–19CrossRef
    203.Aveyard R, Carr N, Slezok H (1985) Monolayers of mono- and dioxyethylene dodecyl ethers at air–water and alkane–water interfaces. Can J Chem 63:2742–2746CrossRef
    204.Islam N, Kato T (2006) Influence of temperature and alkyl chain length on phase behavior in Langmuir monolayers of some ethoxylenated nonionic surfactants. J Colloid Interface Sci 294:288–294CrossRef
    205.Kellner BMJ, Cadenhead DA (1979) Monolayer studies of methyl hydroxyhexadecanoates. Chem Phys Lipids 23:41–48CrossRef
    206.Riviere S, Henon S, Meunier J, Schwartz DK, Tsao M-W, Knobler CM (1994) Textures and phase transitions in Langmuir monolayers of fatty acids. A comparative Brewster angle microscope and polarized fluorescence microscope study. J Chem Phys 101:10045–10051CrossRef
    207.Hönig D, Overbeck GA, Möbius D (1992) Morphology of pentadecanoic acid monolayers at the air/water interface studied by BAM. Adv Mater 4:419–424CrossRef
    208.Weidemann G, Brezesinski G, Vollhardt D, Bringezu F, De Meijere K, Möhwald H (1998) Comparing molecular packing and textures of Langmuir monolayers of fatty acids and their methyl and ethyl esters. J Phys Chem B 102:148–153CrossRef
    209.Jarvis NL (1965) Surface Viscosity of Monomolecular Films of Long-Chain Aliphatic Amides, Amines, Alcohols, and Carboxylic Acids. J Phys Chem 69:1789–1797CrossRef
    210.Mingotaud A-F, Mingotaud C, Patterson LK (1993) Handbook of monolayers, vol 1. Academic, San Diego
    211.Vollhardt D, Siegel S, Cadenhead DA (2004) Characteristic features of hydroxystearic acid monolayers at the air/water interface. J Phys Chem B 108:17448–17456CrossRef
    212.Nandi N, Vollhardt D (2003) Effect of molecular chirality on the morphology of biomimetic Langmuir monolayers. Chem Rev 103:4033–4075CrossRef
    213.Vollhardt D, Fainerman VB, Liu F (2005) Thermodynamic and structural characterization of amphiphilic melamine-type monolayers. J Phys Chem B 109:11706–11711CrossRef
    214.Vysotsky YB, Fomina ES, Fainerman VB, Vollhardt D, Miller R (2013) A quantum chemical model for assessment of the temperature dependence in monolayer formation of amphiphiles at the air/water interface. Phys Chem Chem Phys 15:11623–11628CrossRef
    215.Berge B, Renault A (1993) Ellipsometry study of 2D crystallization of 1-alcohol monolayers at the water surface. Europhys Lett 21:773–777CrossRef
    216.Nagle JF (1980) Theory of the main lipid bilayer phase transition. Annu Rev Phys Chem 31:157–196CrossRef
    217.Dynarowicz-Łatka P, Dhanabalanb A, Oliveira ON Jr (2001) Modern physicochemical research on Langmuir monolayers. Adv Colloid Interf Sci 91:221–293CrossRef
    218.Peltonen L, Hirvonen J, Yliruusi J (2001) The effect of temperature on sorbitan surfactant monolayers. J Colloid Interface Sci 239:134–138CrossRef
    219.Schreiber F (2002) Structure and growth of self-assembling monolayers. Prog Surf Sci 65:151–257CrossRef
    220.Guyot-Sionnest P, Hunt JH, Shen YR (1987) Sum-frequency vibrational spectroscopy of a Langmuir film: study of molecular orientation of a two-dimensional system. Phys Rev Lett 59:1597–1600CrossRef
    221.Bohanon TM, Lin B, Shih MC, Ice GE, Dutta P (1990) Determination of lattice structure and calculation of molecular tilt in lipid monolayers on water using X-ray diffraction. Phys Rev B 41:4846–4849CrossRef
    222.Knock MM, Bell GR, Hill EK, Turner HJ, Bain CD (2003) Sum-frequency spectroscopy of surfactant monolayers at the oil–water interface. J Phys Chem B 107:10801–10814CrossRef
    223.Weissbuch I, Berfeld M, Bouwman W et al (1997) Separation of enantiomers and racemate formation in two-dimensions crystals at the water surface from racemic α-amino acid amphiphiles: design and structure. J Am Chem Soc 119:933–942CrossRef
    224.Eliash R, Weissbuch I, Weygund MJ et al (2004) Structure and reactivity in Langmuir films of amphiphilic alkyl esters of α-amino acids at the air/water interface. J Phys Chem B 108:7228–7240CrossRef
    225.Weinbach SP, Jacquemain D, Leveiller F et al (1993) Effect of cosolvent on the lateral order of spontaneously formed amphiphilic amide two-dimensional crystallites at the air-solution interface. J Am Chem Soc 115:11110–11118CrossRef
    226.Förster G, Meister A, Blume A (2001) Chain packing modes in crystalline surfactant and lipid bilayer. Curr Opin Colloid Interface Sci 6:294–302CrossRef
    227.Weidemann G, Brezesinski G, Vollhardt D, Möhwald H (1998) Disorder in Langmuir monolayers. 1. Disordered packing of alkyl chains. Langmuir 14:6485–6492CrossRef
    228.Schmid F, Stadler C, Lange H (1999) Theoretical modeling of Langmuir monolayers. Colloids Surf A Physicochem Eng Asp 149:301–306CrossRef
    229.Schmid F (1997) Stabilization of tilt order by chein flexibility in Langmuir monolayers. Phys Rev E 55:5774–5784CrossRef
    230.Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96:1533–1554CrossRef
    231.Kuzmenko I, Kjaer K, Als-Nielsen J et al (1999) Detection of chiral disorder in Langmuir monolayers undergoing spontaneous chiral segregation. J Am Chem Soc 121:2657–2661CrossRef
    232.Vysotsky YB, Fomina ES, Belyaeva EA, Aksenenko EV, Fainerman VB, Vollhardt D, Miller R (2011) Quantum-chemical analysis of thermodynamics of two-dimensional cluster formation of racemic α-amino acids at the air/water interface. J Phys Chem B 115:2264–2281CrossRef
    233.Weinbach SP, Jacquemain D, Leveiller F, Kjaer K, Als-Nielsen J, Leiserowitz L (1993) Effect of cosolvent on the lateral order of spontaneously formed amphiphilic amide two-dimensional crystallites at the air-solution interface. J Am Chem Soc 115:11110–11118CrossRef
  • 作者单位:Yu. B. Vysotsky (1)
    E. S. Kartashynska (1)
    D. Vollhardt (2)

    1. Donetsk National Technical University, 58 Artema Str., 83000, Donetsk, Ukraine
    2. Max Planck Institute of Colloids and Interfaces, 14424, Potsdam/Golm, Germany
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Polymer Sciences
    Physical Chemistry
    Soft Matter and Complex Fluids
    Characterization and Evaluation Materials
    Food Science
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1435-1536
文摘
Recent progress in modeling of the surfactant behavior from atomistic to continuous at the air/water interface across different space-time scales is reviewed. Advantages and disadvantages of modern quantum mechanical, molecular dynamical, and mesoscale methods are discussed for description of interactions between amphiphilic molecules leading to formation of 2D films. The use of nonempirical and semiempirical methods for assessment of the thermodynamic and structural parameters of large van der Waals complexes is of particular interest. An approach for calculation of the thermodynamic and structural parameters of clusterization for nonionic surfactants at the air/water interface is proposed on the basis of the quantum chemical semiempirical PM3 method. This approach implicitly takes into account the influence of the interface on the surfactant molecules via stretching and orienting effect. The calculations are carried out in the supermolecule approximation for a limited number of small amphiphilic aggregates with different alkyl chain. The correlation analysis of the calculated data array provides the increments contributing by the intermolecular CH · · · HC interactions and interactions between hydrophilic parts into the thermodynamic parameters of formation and clusterization. Obtained increments are further used for constructing the dependencies of the thermodynamic clusterization parameters per one monomer on the alkyl chain length for large clusters up to 2D films. In the framework of the proposed theoretical approach, the next parameters are calculated as follows: enthalpy, entropy, and Gibbs’ energy of clusterization for 11 homologous series of nonionic surfactants, threshold chain length enabling the process of monolayer formation at standard conditions, the “temperature effect” of clusterization, and the structural parameters of the monolayer unit cell (particularly the tilt angle) depending on the size of the hydrophilic headgroup of the amphiphilic compound.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700