Distinct gene signatures in aortic tissue from ApoE-/- mice exposed to pathogens or Western diet
详细信息    查看全文
  • 作者:Carolyn D Kramer (40)
    Ellen O Weinberg (40)
    Adam C Gower (42)
    Xianbao He (40) (41)
    Samrawit Mekasha (40) (41)
    Connie Slocum (40)
    Lea M Beaulieu (43)
    Lee Wetzler (40)
    Yuriy Alekseyev (44)
    Frank C Gibson III (40) (41)
    Jane E Freedman (43)
    Robin R Ingalls (40) (41)
    Caroline A Genco (40) (41) (45)

    40. Department of Medicine
    ; Section of Infectious Diseases ; Boston University School of Medicine ; Boston ; MA ; USA
    42. Clinical and Translational Science Institute
    ; Boston University ; Boston ; MA ; USA
    41. Boston Medical Center
    ; Boston ; MA ; USA
    43. Department of Medicine
    ; Division of Cardiovascular Medicine ; University of Massachusetts Medical School ; Worcester ; MA ; USA
    44. Department of Pathology and Laboratory Medicine
    ; Boston University School of Medicine ; Boston University ; Boston ; MA ; USA
    45. Department of Microbiology
    ; Boston University School of Medicine ; Boston ; MA ; USA
  • 关键词:ApoE ; / ; mice ; Porphyromonas gingivalis ; Chlamydia pneumoniae ; Western diet ; Gene expression profiling ; GSEA ; Atherosclerosis ; Vascular inflammation ; Vulnerable plaque ; PPAR
  • 刊名:BMC Genomics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:1,369 KB
  • 参考文献:1. Hansson, GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352: pp. 1685-1695 CrossRef
    2. Kronzon, I, Tunick, PA (2006) Aortic atherosclerotic disease and stroke. Circulation 114: pp. 63-75 CrossRef
    3. Puri, R, Nissen, SE, Libby, P, Shao, M, Ballantyne, CM, Barter, PJ, Chapman, MJ, Erbel, R, Raichlen, JS, Uno, K, Kataoka, Y, Nicholls, SJ (2013) C-reactive protein, but not low-density lipoprotein cholesterol levels, associate with coronary atheroma regression and cardiovascular events after maximally intensive statin therapy. Circulation 128: pp. 2395-2403 CrossRef
    4. Fleg, JL, Forman, DE, Berra, K, Bittner, V, Blumenthal, JA, Chen, MA, Cheng, S, Kitzman, DW, Maurer, MS, Rich, MW, Shen, WK, Williams, MA, Zieman, SJ (2013) Secondary prevention of atherosclerotic cardiovascular disease in older adults: a scientific statement from the American Heart Association. Circulation 128: pp. 2422-2446 CrossRef
    5. Kiechl, S, Egger, G, Mayr, M, Wiedermann, CJ, Bonora, E, Oberhollenzer, F, Muggeo, M, Xu, Q, Wick, G, Poewe, W, Willeit, J (2001) Chronic infections and the risk of carotid atherosclerosis: prospective results from a large population study. Circulation 103: pp. 1064-1070 CrossRef
    6. Li, L, Messas, E, Batista, EL, Levine, RA, Amar, S (2002) Porphyromonas gingivalis infection accelerates the progression of atherosclerosis in a heterozygous apolipoprotein E-deficient murine model. Circulation 105: pp. 861-867 CrossRef
    7. Maekawa, T, Takahashi, N, Tabeta, K, Aoki, Y, Miyashita, H, Miyauchi, S, Miyazawa, H, Nakajima, T, Yamazaki, K (2011) Chronic oral infection with Porphyromonas gingivalis accelerates atheroma formation by shifting the lipid profile. PLoS One 6: pp. e20240 CrossRef
    8. Hayashi, C, Papadopoulos, G, Gudino, CV, Weinberg, EO, Barth, KR, Madrigal, AG, Chen, Y, Ning, H, LaValley, M, Gibson, FC, Hamilton, JA, Genco, CA (2012) Protective role for TLR4 signaling in atherosclerosis progression as revealed by infection with a common oral pathogen. J Immunol 189: pp. 3681-3688 CrossRef
    9. Gibson, FC, Hong, C, Chou, HH, Yumoto, H, Chen, J, Lien, E, Wong, J, Genco, CA (2004) Innate immune recognition of invasive bacteria accelerates atherosclerosis in apolipoprotein E-deficient mice. Circulation 109: pp. 2801-2806 CrossRef
    10. Hayashi, C, Viereck, J, Hua, N, Phinikaridou, A, Madrigal, AG, Gibson, FC, Hamilton, JA, Genco, CA (2011) Porphyromonas gingivalis accelerates inflammatory atherosclerosis in the innominate artery of ApoE deficient mice. Atherosclerosis 215: pp. 52-59 CrossRef
    11. Chen, S, Shimada, K, Zhang, W, Huang, G, Crother, TR, Arditi, M (2010) IL-17A is proatherogenic in high-fat diet-induced and Chlamydia pneumoniae infection-accelerated atherosclerosis in mice. J Immunol 185: pp. 5619-5627 CrossRef
    12. Naiki, Y, Sorrentino, R, Wong, MH, Michelsen, KS, Shimada, K, Chen, S, Yilmaz, A, Slepenkin, A, Schroder, NW, Crother, TR, Bulut, Y, Doherty, TM, Bradley, M, Shaposhnik, Z, Peterson, EM, Tontonoz, P, Shah, PK, Arditi, M (2008) TLR/MyD88 and liver X receptor alpha signaling pathways reciprocally control Chlamydia pneumoniae-induced acceleration of atherosclerosis. J Immunol 181: pp. 7176-7185 CrossRef
    13. Campbell, LA, Lee, AW, Rosenfeld, ME, Kuo, CC (2013) Chlamydia pneumoniae induces expression of pro-atherogenic factors through activation of the lectin-like oxidized LDL receptor-1. Pathog Dis 69: pp. 1-6
    14. Player, MS, Mainous, AG, Everett, CJ, Diaz, VA, Knoll, ME, Wright, RU (2012) Chlamydia pneumoniae and progression of subclinical atherosclerosis. Eur J Prev Cardiol 21: pp. 559-565
    15. Kreutmayer, S, Csordas, A, Kern, J, Maass, V, Almanzar, G, Offterdinger, M, Ollinger, R, Maass, M, Wick, G (2013) Chlamydia pneumoniae infection acts as an endothelial stressor with the potential to initiate the earliest heat shock protein 60-dependent inflammatory stage of atherosclerosis. Cell Stress Chaperones 18: pp. 259-268 CrossRef
    16. Honarmand, H (2013) Atherosclerosis Induced by Chlamydophila pneumoniae: a controversial theory. Interdiscip Perspect Infect Dis 2013: pp. 941392
    17. Desvarieux, M, Demmer, RT, Rundek, T, Boden-Albala, B, Jacobs, DR, Sacco, RL, Papapanou, PN (2005) Periodontal microbiota and carotid intima-media thickness: the Oral Infections and Vascular Disease Epidemiology Study (INVEST). Circulation 111: pp. 576-582 CrossRef
    18. Padilla, C, Lobos, O, Hubert, E, Gonzalez, C, Matus, S, Pereira, M, Hasbun, S, Descouvieres, C (2006) Periodontal pathogens in atheromatous plaques isolated from patients with chronic periodontitis. J Periodontal Res 41: pp. 350-353 CrossRef
    19. Haraszthy, VI, Zambon, JJ, Trevisan, M, Zeid, M, Genco, RJ (2000) Identification of periodontal pathogens in atheromatous plaques. J Periodontol 71: pp. 1554-1560 CrossRef
    20. Modi, DK, Chopra, VS, Bhau, U (2009) Rheumatoid arthritis and periodontitis: biological links and the emergence of dual purpose therapies. Indian J Dent Res 20: pp. 86-90 CrossRef
    21. Hajishengallis, G (2009) Porphyromonas gingivalis-host interactions: open war or intelligent guerilla tactics?. Microbes Infect 11: pp. 637-645 CrossRef
    22. Darveau, RP, Hajishengallis, G, Curtis, MA (2012) Porphyromonas gingivalis as a potential community activist for disease. J Dent Res 91: pp. 816-820 CrossRef
    23. Gibson, FC, Ukai, T, Genco, CA (2008) Engagement of specific innate immune signaling pathways during Porphyromonas gingivalis induced chronic inflammation and atherosclerosis. Front Biosci 13: pp. 2041-2059 CrossRef
    24. Hayashi, C, Gudino, CV, Gibson, FC, Genco, CA (2010) Review: Pathogen-induced inflammation at sites distant from oral infection: bacterial persistence and induction of cell-specific innate immune inflammatory pathways. Mol Oral Microbiol 25: pp. 305-316 CrossRef
    25. Chlamydophila pneumoniae infection. Centers for Disease Control http://www.cdc.gov/pneumonia/atypical/chlamydophila.html
    26. Papadodima, O, Sirsjo, A, Kolisis, FN, Chatziioannou, A (2012) Application of an integrative computational framework in trancriptomic data of atherosclerotic mice suggests numerous molecular players. Adv Bioinformatics 2012: pp. 453513 CrossRef
    27. Jawien, J (2012) The role of an experimental model of atherosclerosis: apoE-knockout mice in developing new drugs against atherogenesis. Curr Pharm Biotechnol 13: pp. 2435-2439 CrossRef
    28. Jawien, J, Nastalek, P, Korbut, R (2004) Mouse models of experimental atherosclerosis. J Physiol Pharmacol 55: pp. 503-517
    29. Subramanian, A, Tamayo, P, Mootha, VK, Mukherjee, S, Ebert, BL, Gillette, MA, Paulovich, A, Pomeroy, SL, Golub, TR, Lander, ES, Mesirov, JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102: pp. 15545-15550 CrossRef
    30. Mootha, VK, Lindgren, CM, Eriksson, KF, Subramanian, A, Sihag, S, Lehar, J, Puigserver, P, Carlsson, E, Ridderstrale, M, Laurila, E, Houstis, N, Daly, MJ, Patterson, N, Mesirov, JP, Golub, TR, Tamayo, P, Spiegelman, B, Lander, ES, Hirschhorn, JN, Altshuler, D, Groop, LC (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34: pp. 267-273 CrossRef
    31. Subramanian, A, Kuehn, H, Gould, J, Tamayo, P, Mesirov, JP (2007) GSEA-P: a desktop application for Gene Set Enrichment Analysis. Bioinformatics 23: pp. 3251-3253 CrossRef
    32. Chen, YC, Bui, AV, Diesch, J, Manasseh, R, Hausding, C, Rivera, J, Haviv, I, Agrotis, A, Htun, NM, Jowett, J, Hagemeyer, CE, Hannan, RD, Bobik, A, Peter, K (2013) A novel mouse model of atherosclerotic plaque instability for drug testing and mechanistic/therapeutic discoveries using gene and microRNA expression profiling. Circ Res 113: pp. 252-265 CrossRef
    33. Moore, KJ, Sheedy, FJ, Fisher, EA (2013) Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13: pp. 709-721 CrossRef
    34. Edfeldt, K, Swedenborg, J, Hansson, GK, Yan, ZQ (2002) Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation 105: pp. 1158-1161
    35. Xu, XH, Shah, PK, Faure, E, Equils, O, Thomas, L, Fishbein, MC, Luthringer, D, Xu, XP, Rajavashisth, TB, Yano, J, Kaul, S, Arditi, M (2001) Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL. Circulation 104: pp. 3103-3108 CrossRef
    36. Bjorkbacka, H, Kunjathoor, VV, Moore, KJ, Koehn, S, Ordija, CM, Lee, MA, Means, T, Halmen, K, Luster, AD, Golenbock, DT, Freeman, MW (2004) Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nat Med 10: pp. 416-421 CrossRef
    37. Higashimori, M, Tatro, JB, Moore, KJ, Mendelsohn, ME, Galper, JB, Beasley, D (2011) Role of toll-like receptor 4 in intimal foam cell accumulation in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 31: pp. 50-57 CrossRef
    38. Michelsen, KS, Wong, MH, Shah, PK, Zhang, W, Yano, J, Doherty, TM, Akira, S, Rajavashisth, TB, Arditi, M (2004) Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc Natl Acad Sci U S A 101: pp. 10679-10684 CrossRef
    39. Mullick, AE, Tobias, PS, Curtiss, LK (2005) Modulation of atherosclerosis in mice by Toll-like receptor 2. J Clin Invest 115: pp. 3149-3156 CrossRef
    40. Liu, X, Ukai, T, Yumoto, H, Davey, M, Goswami, S, Gibson, FC, Genco, CA (2008) Toll-like receptor 2 plays a critical role in the progression of atherosclerosis that is independent of dietary lipids. Atherosclerosis 196: pp. 146-154 CrossRef
    41. Jain, S, Coats, SR, Chang, AM, Darveau, RP (2013) A novel class of lipoprotein lipase-sensitive molecules mediates Toll-like receptor 2 activation by Porphyromonas gingivalis. Infect Immun 81: pp. 1277-1286 CrossRef
    42. Nichols, FC, Bajrami, B, Clark, RB, Housley, W, Yao, X (2012) Free lipid A isolated from Porphyromonas gingivalis lipopolysaccharide is contaminated with phosphorylated dihydroceramide lipids: recovery in diseased dental samples. Infect Immun 80: pp. 860-874 CrossRef
    43. Miller, SI, Ernst, RK, Bader, MW (2005) LPS, TLR4 and infectious disease diversity. Nat Rev Microbiol 3: pp. 36-46 CrossRef
    44. Coats, SR, Pham, TT, Bainbridge, BW, Reife, RA, Darveau, RP (2005) MD-2 mediates the ability of tetra-acylated and penta-acylated lipopolysaccharides to antagonize Escherichia coli lipopolysaccharide at the TLR4 signaling complex. J Immunol 175: pp. 4490-4498 CrossRef
    45. Reife, RA, Coats, SR, Al-Qutub, M, Dixon, DM, Braham, PA, Billharz, RJ, Howald, WN, Darveau, RP (2006) Porphyromonas gingivalis lipopolysaccharide lipid A heterogeneity: differential activities of tetra- and penta-acylated lipid A structures on E-selectin expression and TLR4 recognition. Cell Microbiol 8: pp. 857-868 CrossRef
    46. Slocum, C, Coats, SR, Hua, N, Kramer, C, Papadopoulos, G, Weinberg, EO, Gudino, CV, Hamilton, JA, Darveau, RP, Genco, CA (2014) Distinct lipid a moieties contribute to pathogen-induced site-specific vascular inflammation. PLoS Pathog 10: pp. e1004215 CrossRef
    47. Prebeck, S, Kirschning, C, Durr, S, da Costa, C, Donath, B, Brand, K, Redecke, V, Wagner, H, Miethke, T (2001) Predominant role of toll-like receptor 2 versus 4 in Chlamydia pneumoniae-induced activation of dendritic cells. J Immunol 167: pp. 3316-3323 CrossRef
    48. Beatty, WL, Morrison, RP, Byrne, GI (1994) Persistent chlamydiae: from cell culture to a paradigm for chlamydial pathogenesis. Microbiol Rev 58: pp. 686-699
    49. Blasi, F, Centanni, S, Allegra, L (2004) Chlamydia pneumoniae: crossing the barriers?. Eur Respir J 23: pp. 499-500 CrossRef
    50. Kalayoglu, MV, Indrawati, 釁? Morrison, RP, Morrison, SG, Yuan, Y, Byrne, GI (2000) Chlamydial virulence determinants in atherogenesis: the role of chlamydial lipopolysaccharide and heat shock protein 60 in macrophage-lipoprotein interactions. J Infect Dis 181: pp. S483-S489 CrossRef
    51. Cao, F, Castrillo, A, Tontonoz, P, Re, F, Byrne, GI (2007) Chlamydia pneumoniae鈥搃nduced macrophage foam cell formation is mediated by Toll-like receptor 2. Infect Immun 75: pp. 753-759 CrossRef
    52. Bjorkegren, JL, Hagg, S, Talukdar, HA, Foroughi Asl, H, Jain, RK, Cedergren, C, Shang, MM, Rossignoli, A, Takolander, R, Melander, O, Hamsten, A, Michoel, T, Skogsberg, J (2014) Plasma cholesterol-induced lesion networks activated before regression of early, mature, and advanced atherosclerosis. PLoS Genet 10: pp. e1004201 CrossRef
    53. Madamanchi, NR, Runge, MS (2007) Mitochondrial dysfunction in atherosclerosis. Circ Res 100: pp. 460-473 CrossRef
    54. Phinikaridou, A, Andia, ME, Passacquale, G, Ferro, A, Botnar, RM (2013) Noninvasive MRI monitoring of the effect of interventions on endothelial permeability in murine atherosclerosis using an albumin-binding contrast agent. J Am Heart Assoc 2: pp. e000402 CrossRef
    55. Erridge, C (2010) Endogenous ligands of TLR2 and TLR4: agonists or assistants?. J Leukoc Biol 87: pp. 989-999 CrossRef
    56. Weinberg, EO, Genco, CA (2012) Directing TRAF-ic: cell-specific TRAF6 signaling in chronic inflammation and atherosclerosis. Circulation 126: pp. 1678-1680 CrossRef
    57. Hyvarinen, K, Tuomainen, AM, Laitinen, S, Alfthan, G, Salminen, I, Leinonen, M, Saikku, P, Kovanen, PT, Jauhiainen, M, Pussinen, PJ (2013) The effect of proatherogenic pathogens on adipose tissue transcriptome and fatty acid distribution in apolipoprotein E-deficient mice. BMC Genomics 14: pp. 709 CrossRef
    58. Hayashi, C, Madrigal, AG, Liu, X, Ukai, T, Goswami, S, Gudino, CV, Gibson, FC, Genco, CA (2010) Pathogen-mediated inflammatory atherosclerosis is mediated in part via Toll-like receptor 2-induced inflammatory responses. J Innate Immun 2: pp. 334-343 CrossRef
    59. Cao, C, Zhu, Y, Chen, W, Li, L, Qi, Y, Wang, X, Zhao, Y, Wan, X, Chen, X (2013) IKKepsilon knockout prevents high fat diet induced arterial atherosclerosis and NF-kappaB signaling in mice. PLoS One 8: pp. e64930 CrossRef
    60. Lee, J, Baldwin, WM, Lee, CY, Desiderio, S (2013) Stat3beta mitigates development of atherosclerosis in apolipoprotein E-deficient mice. J Mol Med (Berl) 91: pp. 965-976 CrossRef
    61. Wang, H, Zhu, HQ, Wang, F, Zhou, Q, Gui, SY, Wang, Y (2013) MicroRNA-1 prevents high-fat diet-induced endothelial permeability in apoE knock-out mice. Mol Cell Biochem 378: pp. 153-159
    62. Pi, X, Lockyer, P, Dyer, LA, Schisler, JC, Russell, B, Carey, S, Sweet, DT, Chen, Z, Tzima, E, Willis, MS, Homeister, JW, Moser, M, Patterson, C (2012) Bmper inhibits endothelial expression of inflammatory adhesion molecules and protects against atherosclerosis. Arterioscler Thromb Vasc Biol 32: pp. 2214-2222 CrossRef
    63. Moazed, TC, Campbell, LA, Rosenfeld, ME, Grayston, JT, Kuo, CC (1999) Chlamydia pneumoniae infection accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice. J Infect Dis 180: pp. 238-241 CrossRef
    64. Moazed, TC, Kuo, C, Grayston, JT, Campbell, LA (1997) Murine models of Chlamydia pneumoniae infection and atherosclerosis. J Infect Dis 175: pp. 883-890 CrossRef
    65. Papadopoulos, G, Kramer, CD, Slocum, CS, Weinberg, EO, Hua, N, Gudino, CV, Hamilton, JA, Genco, CA (2014) A mouse model for pathogen-induced chronic inflammation at local and systemic sites. J Vis Exp 90: pp. e51556
    66. He, X, Mekasha, S, Mavrogiorgos, N, Fitzgerald, KA, Lien, E, Ingalls, RR (2010) Inflammation and fibrosis during Chlamydia pneumoniae infection is regulated by IL-1 and the NLRP3/ASC inflammasome. J Immunol 184: pp. 5743-5754 CrossRef
    67. He, X, Nair, A, Mekasha, S, Alroy, J, O'Connell, CM, Ingalls, RR (2011) Enhanced virulence of Chlamydia muridarum respiratory infections in the absence of TLR2 activation. PLoS One 6: pp. e20846 CrossRef
    68. Storey, JD, Tibshirani, R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100: pp. 9440-9445 CrossRef
    69. Storey, JD, Tibshirani, R (2003) Statistical methods for identifying differentially expressed genes in DNA microarrays. Methods Mol Biol 224: pp. 149-157
    70. Smyth, GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: pp. Article3
    71. Huang da, W, Sherman, BT, Zheng, X, Yang, J, Imamichi, T, Stephens, R, Lempicki, RA (2012) Extracting biological meaning from large gene lists with DAVID. Curr Protoc Bioinformatics.
    72. da Huang, W, Sherman, BT, Lempicki, RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4: pp. 44-57 CrossRef
    73. Kramer, CD, Weinberg, EO (2014) Genome Data from Series Record ID GSE60086.
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Atherosclerosis is a progressive disease characterized by inflammation and accumulation of lipids in vascular tissue. Porphyromonas gingivalis (Pg) and Chlamydia pneumoniae (Cp) are associated with inflammatory atherosclerosis in humans. Similar to endogenous mediators arising from excessive dietary lipids, these Gram-negative pathogens are pro-atherogenic in animal models, although the specific inflammatory/atherogenic pathways induced by these stimuli are not well defined. In this study, we identified gene expression profiles that characterize P. gingivalis, C. pneumoniae, and Western diet (WD) at acute and chronic time points in aortas of Apolipoprotein E (ApoE-/-) mice. Results At the chronic time point, we observed that P. gingivalis was associated with a high number of unique differentially expressed genes compared to C. pneumoniae or WD. For the top 500 differentially expressed genes unique to each group, we observed a high percentage (76%) that exhibited decreased expression in P. gingivalis-treated mice in contrast to a high percentage (96%) that exhibited increased expression in WD mice. C. pneumoniae treatment resulted in approximately equal numbers of genes that exhibited increased and decreased expression. Gene Set Enrichment Analysis (GSEA) revealed distinct stimuli-associated phenotypes, including decreased expression of mitochondrion, glucose metabolism, and PPAR pathways in response to P. gingivalis but increased expression of mitochondrion, lipid metabolism, carbohydrate and amino acid metabolism, and PPAR pathways in response to C. pneumoniae; WD was associated with increased expression of immune and inflammatory pathways. DAVID analysis of gene clusters identified by two-way ANOVA at acute and chronic time points revealed a set of core genes that exhibited altered expression during the natural progression of atherosclerosis in ApoE-/- mice; these changes were enhanced in P. gingivalis-treated mice but attenuated in C. pneumoniae-treated mice. Notable differences in the expression of genes associated with unstable plaques were also observed among the three pro-atherogenic stimuli. Conclusions Despite the common outcome of P. gingivalis, C. pneumoniae, and WD on the induction of vascular inflammation and atherosclerosis, distinct gene signatures and pathways unique to each pro-atherogenic stimulus were identified. Our results suggest that pathogen exposure results in dysregulated cellular responses that may impact plaque progression and regression pathways.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700