A framework for stability analysis of high-order nonlinear systems based on the CMAC method
详细信息    查看全文
文摘
A framework for analyzing the stability of a class of high-order minimum-phase nonlinear systems of relative degree two based on the characteristic model-based adaptive control (CMAC) method is presented. In particular, concerning the tracking problem for such high-order nonlinear systems, by introducing a consistency condition for quantitatively describing modeling errors corresponding to a group of characteristic models together with a certain kind of CMAC laws, we prove closed-loop stability and show that such controllers can make output tracking error arbitrarily small. Furthermore, following this framework, with a specific characteristic model and a golden-section adaptive controller, detailed sufficient conditions to stabilize such groups of highorder nonlinear systems are presented and, at the same time, tracking performance is analyzed. Our results provide a new perspective for exploring the stability of some high-order nonlinear plants under CMAC, and lay certain theoretical foundations for practical applications of the CMAC method.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700