Variability in the common genetic architecture of social-communication spectrum phenotypes during childhood and adolescence
详细信息    查看全文
  • 作者:Beate St Pourcain (12) (13) (14)
    David H Skuse (15)
    William P Mandy (16)
    Kai Wang (17) (18)
    Hakon Hakonarson (17)
    Nicholas J Timpson (12)
    David M Evans (12) (19)
    John P Kemp (12) (19)
    Susan M Ring (12)
    Wendy L McArdle (20)
    Jean Golding (20) (21)
    George Davey Smith (12)
  • 关键词:ALSPAC ; ASD ; Autism ; GCTA heritability ; GWAS ; Social communication
  • 刊名:Molecular Autism
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:5
  • 期:1
  • 全文大小:709 KB
  • 参考文献:1. Wing L: The continuum of autistic characteristics. In / Diagnosis and Assessment in Autism. Edited by: Schopler E, Mesibov G. New York: Plenum; 1988:91-10. CrossRef
    2. Mandy WPL, Skuse DH: Research review: What is the association between the social-communication element of autism and repetitive interests, behaviours and activities? / J Child Psychol Psychiatry 2008, 49:795-08. CrossRef
    3. American Psychiatric Association: / Diagnostic and statistical manual of mental disorders. 5th edition. Arlington, VA: American Psychiatric Publishing; 2013.
    4. Piven J, Palmer P, Jacobi D, Childress D, Arndt S: Broader autism phenotype: evidence from a family history study of multiple-incidence autism families. / Am J Psychiatry 1997, 154:185-90.
    5. Constantino JN, Todd RD: Autistic traits in the general population: a twin study. / Arch Gen Psychiatry 2003, 60:524-30. CrossRef
    6. Posserud MB, Lundervold AJ, Gillberg C: Autistic features in a total population of 7--year-old children assessed by the ASSQ (Autism Spectrum Screening Questionnaire). / J Child Psychol Psychiatry 2006, 47:167-75. CrossRef
    7. Ronald A, Hoekstra RA: Autism spectrum disorders and autistic traits: a decade of new twin studies. / Am J Med Genet B Neuropsychiatr Genet 2011, 156B:255-74. CrossRef
    8. Lundstr?m S, Chang Z, R?stam M, Gillberg C, Larsson H, Anckars?ter H, Lichtenstein P: Autism spectrum disorders and autistic like traits: similar etiology in the extreme end and the normal variation. / Arch Gen Psychiatry 2012, 69:46-2. CrossRef
    9. Robinson EB, Koenen KC, McCormick MC, Munir K, Hallett V, Happé F, Plomin R, Ronald A: Evidence that autistic traits show the same etiology in the general population and at the quantitative extremes (5%, 2.5%, and 1%). / Arch Gen Psychiatry 2011, 68:1113-121. CrossRef
    10. St Pourcain B, Wang K, Glessner JT, Golding J, Steer C, Ring SM, Skuse DH, Grant SFA, Hakonarson H, Davey Smith G: Association between a high-risk autism locus on 5p14 and social-communication-spectrum phenotypes in the general population. / Am J Psychiatry 2010, 167:1364-372. CrossRef
    11. Steer CD, Golding J, Bolton PF: Traits contributing to the autistic spectrum. / PLoS One 2010, 5:e12633. CrossRef
    12. Chakrabarti B, Dudbridge F, Kent L, Wheelwright S, Hill-Cawthorne G, Allison C, Banerjee-Basu S, Baron-Cohen S: Genes related to sex steroids, neural growth, and social-emotional behavior are associated with autistic traits, empathy, and Asperger syndrome. / Autism Res 2009, 2:157-77. CrossRef
    13. Anney R, Klei L, Pinto D, Almeida J, Bacchelli E, Baird G, Bolshakova N, B?lte S, Bolton PF, Bourgeron T, Brennan S, Brian J, Casey J, Conroy J, Correia C, Corsello C, Crawford EL, de Jonge M, Delorme R, Duketis E, Duque F, Estes A, Farrar P, Fernandez BA, Folstein SE, Fombonne E, Gilbert J, Gillberg C, Glessner JT, Green A, / et al.: Individual common variants exert weak effects on risk for autism spectrum disorders. / Hum Mol Genet 2012, 21:4781-792. CrossRef
    14. Wang K, Zhang H, Ma D, Bucan M, Glessner JT, Abrahams BS, Salyakina D, Imielinski M, Bradfield JP, Sleiman PMA, Kim CE, Hou C, Frackelton E, Chiavacci R, Takahashi N, Sakurai T, Rappaport E, Lajonchere CM, Munson J, Estes A, Korvatska O, Piven J, Sonnenblick LI, Alvarez Retuerto AI, Herman EI, Dong H, Hutman T, Sigman M, Ozonoff S, Klin A, / et al.: Common genetic variants on 5p14.1 associate with autism spectrum disorders. / Nature 2009, 459:528-33. CrossRef
    15. Weiss LA, Arking DE, Daly MJ, Chakravarti A: A genome-wide linkage and association scan reveals novel loci for autism. / Nature 2009, 461:802-08. CrossRef
    16. Ronald A, Butcher LM, Docherty S, Davis OSP, Schalkwyk LC, Craig IW, Plomin R: A genome-wide association study of social and non-social autistic-like traits in the general population using pooled DNA, 500?K SNP microarrays and both community and diagnosed autism replication samples. / Behav Genet 2010, 40:31-5. CrossRef
    17. St Pourcain B, Whitehouse AJO, Ang WQ, Warrington NM, Glessner JT, Wang K, Timpson NJ, Evans DM, Kemp JP, Ring SM, McArdle WL, Golding J, Hakonarson H, Pennell CE, Smith GD: Common variation contributes to the genetic architecture of social communication traits. / Mol Autism 2013, 4:34. CrossRef
    18. Devlin B, Melhem N, Roeder K: Do common variants play a role in risk for autism? Evidence and theoretical musings. / Brain Res 2011, 1380:78-4. CrossRef
    19. Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R, Conroy J, Magalhaes TR, Correia C, Abrahams BS, Almeida J, Bacchelli E, Bader GD, Bailey AJ, Baird G, Battaglia A, Berney T, Bolshakova N, B?lte S, Bolton PF, Bourgeron T, Brennan S, Brian J, Bryson SE, Carson AR, Casallo G, Casey J, Chung BHY, Cochrane L, Corsello C, / et al.: Functional impact of global rare copy number variation in autism spectrum disorders. / Nature 2010, 466:368-72. CrossRef
    20. Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, Yamrom B, Yoon S, Krasnitz A, Kendall J, Leotta A, Pai D, Zhang R, Lee YH, Hicks J, Spence SJ, Lee AT, Puura K, Lehtim?ki T, Ledbetter D, Gregersen PK, Bregman J, Sutcliffe JS, Jobanputra V, Chung W, Warburton D, King MC, Skuse D, Geschwind DH, Gilliam TC, / et al.: Strong association of de novo copy number mutations with autism. / Science 2007, 316:445-49. CrossRef
    21. State MW, Levitt P: The conundrums of understanding genetic risks for autism spectrum disorders. / Nat Neurosci 2011, 14:1499-506. CrossRef
    22. Hobbs HH, Brown MS, Goldstein JL: Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. / Hum Mutat 1992, 1:445-66. CrossRef
    23. Kathiresan S, Melander O, Guiducci C, Surti A, Burtt NP, Rieder MJ, Cooper GM, Roos C, Voight BF, Havulinna AS, Wahlstrand B, Hedner T, Corella D, Tai ES, Ordovas JM, Berglund G, Vartiainen E, Jousilahti P, Hedblad B, Taskinen MR, Newton-Cheh C, Salomaa V, Peltonen L, Groop L, Altshuler DM, Orho-Melander M: Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. / Nat Genet 2008, 40:189-97. CrossRef
    24. Haworth C, Wright M, Luciano M, Martin N, de Geus E, van Beijsterveldt C, Bartels M, Posthuma D, Boomsma D, Davis O, Kovas Y, Corley R, DeFries J, Hewitt J, Olson R, Rhea SA, Wadsworth S, Iacono W, McGue M, Thompson L, Hart S, Petrill S, Lubinski D, Plomin R: The heritability of general cognitive ability increases linearly from childhood to young adulthood. / Mol Psychiatry 2010, 15:1112-120. CrossRef
    25. St Pourcain B, Mandy WP, Heron J, Golding J, Davey Smith G, Skuse DH: Links between co-occurring social-communication and hyperactive-inattentive trait trajectories. / J Am Acad Child Adolesc Psychiatry 2011, 50:892-02. CrossRef
    26. Hayiou-Thomas ME, Dale PS, Plomin R: The etiology of variation in language skills changes with development: a longitudinal twin study of language from 2 to 12?years. / Dev Sci 2012, 15:233-49. CrossRef
    27. Skuse D, Mandy W, Steer C, Miller L, Goodman R, Lawrence K, Emond A, Golding J: Social communication competence and functional adaptation in a general population of children: preliminary evidence for sex-by-verbal IQ differential risk. / J Am Acad Child Adolesc Psychiatry 2008, 48:128-37. CrossRef
    28. Boyd A, Golding J, Macleod J, Lawlor DA, Fraser A, Henderson J, Molloy L, Ness A, Ring S, Davey Smith G: Cohort profile: the “Children of the 90s”—the index offspring of the Avon Longitudinal Study of Parents and Children. / Int J Epidemiol 2013, 42:111-27. CrossRef
    29. Skuse D, Mandy W, Scourfield J: Measuring autistic traits: heritability, reliability and validity of the Social and Communication Disorders Checklist. / Br J Psychiatry 2005, 187:568-72. CrossRef
    30. Paternoster L, Zhurov AI, Toma AM, Kemp JP, St Pourcain B, Timpson NJ, McMahon G, McArdle W, Ring SM, Smith GD, Richmond S, Evans DM: Genome-wide association study of three-dimensional facial morphology identifies a variant in PAX3 associated with nasion position. / Am J Hum Genet 2012, 90:478-85. CrossRef
    31. Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR: MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. / Genet Epidemiol 2010, 34:816-34. CrossRef
    32. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D: Principal components analysis corrects for stratification in genome-wide association studies. / Nat Genet 2006, 38:904-09. CrossRef
    33. Yang J, Manolio TA, Pasquale LR, Boerwinkle E, Caporaso N, Cunningham JM, de Andrade M, Feenstra B, Feingold E, Hayes MG, Hill WG, Landi MT, Alonso A, Lettre G, Lin P, Ling H, Lowe W, Mathias RA, Melbye M, Pugh E, Cornelis MC, Weir BS, Goddard ME, Visscher PM: Genome partitioning of genetic variation for complex traits using common SNPs. / Nat Genet 2011, 43:519-25. CrossRef
    34. Lee SH, Yang J, Goddard ME, Visscher PM, Wray NR: Estimation of pleiotropy between complex diseases using single-nucleotide polymorphism-derived genomic relationships and restricted maximum likelihood. / Bioinformatics 2012, 28:2540-542. CrossRef
    35. Faraway JJ: / Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models. Boca Raton, FL: Chapman & Hall/CRC Press; 2006.
    36. Moskvina V, Craddock N, Holmans P, Nikolov I, Pahwa JS, Green E, Owen MJ, O’Donovan MC: Gene-wide analyses of genome-wide association data sets: evidence for multiple common risk alleles for schizophrenia and bipolar disorder and for overlap in genetic risk. / Mol Psychiatry 2008, 14:252-60. CrossRef
    37. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC: PLINK: a tool set for whole-genome association and population-based linkage analyses. / Am J Hum Genet 2007, 81:559-75. CrossRef
    38. Moskvina V, Schmidt KM, Vedernikov A, Owen MJ, Craddock N, Holmans P, O’Donovan MC: Permutation-based approaches do not adequately allow for linkage disequilibrium in gene-wide multi-locus association analysis. / Eur J Hum Genet 2012, 20:890-96. CrossRef
    39. Gelman A, Hill J: / Data Analysis Using Regression and Multilevel/Hierarchical Models. New York: Cambridge University Press; 2007.
    40. Lord C, Rutter M, Le Couteur A: Autism Diagnostic Interview–Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. / J Autism Dev Disord 1994, 24:659-85. CrossRef
    41. Lange C, Laird NM: On a general class of conditional tests for family-based association studies in genetics: the asymptotic distribution, the conditional power, and optimality considerations. / Genet Epidemiol 2002, 23:165-80. CrossRef
    42. Lord C, Risi S, Lambrecht L, Cook E, Leventhal BL, DiLavore PC, Pickles A, Rutter M: The Autism Diagnostic Observation Schedule–Generic: a standard measure of social and communication deficits associated with the spectrum of autism. / J Autism Dev Disord 2000, 30:205-23. CrossRef
    43. Marchini J, Howie B, Myers S, McVean G, Donnelly P: A new multipoint method for genome-wide association studies by imputation of genotypes. / Nat Genet 2007, 39:906-13. CrossRef
    44. O’Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ, Girirajan S, Karakoc E, MacKenzie AP, Ng SB, Baker C, Rieder MJ, Nickerson DA, Bernier R, Fisher SE, Shendure J, Eichler EE: Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. / Nat Genet 2011, 43:585-89. A published erratum appears in / Nat Genet 2012, 44:471 CrossRef
    45. Christian SL, Brune CW, Sudi J, Kumar RA, Liu S, Karamohamed S, Badner JA, Matsui S, Conroy J, McQuaid D, Gergel J, Hatchwell E, Gilliam TC, Gershon ES, Nowak NJ, Dobyns WB, Cook EH: Novel submicroscopic chromosomal abnormalities detected in autism spectrum disorder. / Biol Psychiatry 2008, 63:1111-117. CrossRef
    46. Girirajan S, Dennis MY, Baker C, Malig M, Coe BP, Campbell CD, Mark K, Vu TH, Alkan C, Cheng Z, Biesecker LG, Bernier R, Eichler EE: Refinement and discovery of new hotspots of copy-number variation associated with autism spectrum disorder. / Am J Hum Genet 2013, 92:221-37. CrossRef
    47. Trzaskowski M, Dale PS, Plomin R: No genetic influence for childhood behavior problems from DNA analysis. / J Am Acad Child Adolesc Psychiatry 2013, 52:1048-056. CrossRef
    48. Wray NR, Yang J, Hayes BJ, Price AL, Goddard ME, Visscher PM: Pitfalls of predicting complex traits from SNPs. / Nat Rev Genet 2013, 14:507-15. CrossRef
    49. Plomin R, DeFries JC, Knopik VS, Neiderhiser JM: / Behavioral Genetics. 6th edition. New York: Worth; 2013.
    50. Trzaskowski M, Yang J, Visscher PM, Plomin R: DNA evidence for strong genetic stability and increasing heritability of intelligence from age 7 to 12. / Mol Psychiatry in press. doi:10.1038/mp.2012.191
    51. Peterson AC, Taylor B: The biological approach to adolescence. In / Handbook of Adolescent Psychology. Edited by: Adelson J. New York: Wiley; 1980.
    52. Montemayor R: Parents and adolescents in conflict: all families some of the time and some families most of the time. / J Early Adolescence 1983, 3:83-03. CrossRef
    53. Blum R, Kafitz KW, Konnerth A: Neurotrophin-evoked depolarization requires the sodium channel Na V 1.9. / Nature 2002, 419:687-93. CrossRef
    54. Weiss LA, Escayg A, Kearney JA, Trudeau M, MacDonald BT, Mori M, Reichert J, Buxbaum JD, Meisler MH, The AGRE Consortium: Sodium channels SCN1A , SCN2A and SCN3A in familial autism. / Mol Psychiatry 2003, 8:186-94. CrossRef
    55. Kurian MA, Meyer E, Vassallo G, Morgan NV, Prakash N, Pasha S, Hai NA, Shuib S, Rahman F, Wassmer E, Cross JH, O’Callaghan FJ, Osborne JP, Scheffer IE, Gissen P, Maher ER: Phospholipase Cβ1 deficiency is associated with early-onset epileptic encephalopathy. / Brain 2010, 133:2964-970. CrossRef
    56. Lo Vasco VR, Cardinale G, Polonia P: Deletion of PLCB1 gene in schizophrenia affected patients. / J Cell Mol Med 2012, 16:844-51. CrossRef
  • 作者单位:Beate St Pourcain (12) (13) (14)
    David H Skuse (15)
    William P Mandy (16)
    Kai Wang (17) (18)
    Hakon Hakonarson (17)
    Nicholas J Timpson (12)
    David M Evans (12) (19)
    John P Kemp (12) (19)
    Susan M Ring (12)
    Wendy L McArdle (20)
    Jean Golding (20) (21)
    George Davey Smith (12)

    12. The Medical Research Council Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
    13. School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol, BS1 2LY, UK
    14. School of Experimental Psychology, University of Bristol, 12a Priory Road, Bristol, BS8 1TU, UK
    15. Behavioural Sciences Unit, Institute of Child Health, University College London, Gower Street, London, WC1E 6BT, UK
    16. Research Department of Clinical, Educational and Health Psychology, University College London, Gower Street, London, WC1E 6BT, UK
    17. Children’s Hospital of Philadelphia and Perelman School of Medicine, 3615 Civic Center Boulevard, Philadelphia, PA, 19104, USA
    18. Zilkha Neurogenetic Institute & Department of Psychiatry, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA, 90089, USA
    19. Translational Research Institute, University of Queensland Diamantina Institute, Level 7, 37 Kent St, Woolloongabba, QLD, 4102, Australia
    20. School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
    21. Centre for Child and Adolescent Health, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
  • ISSN:2040-2392
文摘
Background Social-communication abilities are heritable traits, and their impairments overlap with the autism continuum. To characterise the genetic architecture of social-communication difficulties developmentally and identify genetic links with the autistic dimension, we conducted a genome-wide screen of social-communication problems at multiple time-points during childhood and adolescence. Methods Social-communication difficulties were ascertained at ages 8, 11, 14 and 17?years in a UK population-based birth cohort (Avon Longitudinal Study of Parents and Children; N?≤-,628) using mother-reported Social Communication Disorder Checklist scores. Genome-wide Complex Trait Analysis (GCTA) was conducted for all phenotypes. The time-points with the highest GCTA heritability were subsequently analysed for single SNP association genome-wide. Type I error in the presence of measurement relatedness and the likelihood of observing SNP signals near known autism susceptibility loci (co-location) were assessed via large-scale, genome-wide permutations. Association signals (P?≤-0?) were also followed up in Autism Genetic Resource Exchange pedigrees (N--93) and the Autism Case Control cohort (N cases/N controls--,204/6,491). Results GCTA heritability was strongest in childhood (h 2 (8 years)--.24) and especially in later adolescence (h 2 (17 years)--.45), with a marked drop during early to middle adolescence (h 2 (11 years)--.16 and h2 (14 years)--.08). Genome-wide screens at ages 8 and 17?years identified for the latter time-point evidence for association at 3p22.2 near SCN11A (rs4453791, P--.3?×-0?; genome-wide empirical P--.011) and suggestive evidence at 20p12.3 at PLCB1 (rs3761168, P--.9?×-0?; genome-wide empirical P--.085). None of these signals contributed to risk for autism. However, the co-location of population-based signals and autism susceptibility loci harbouring rare mutations, such as PLCB1, is unlikely to be due to chance (genome-wide empirical P co-location--.007). Conclusions Our findings suggest that measurable common genetic effects for social-communication difficulties vary developmentally and that these changes may affect detectable overlaps with the autism spectrum.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700