Up-regulation of CNDP2 facilitates the proliferation of colon cancer
详细信息    查看全文
  • 作者:Conglong Xue (1)
    Zhenwei Zhang (2)
    Honglan Yu (1)
    Miao Yu (1)
    Kaitao Yuan (1)
    Ting Yang (3)
    Mingyong Miao (2)
    Hanping Shi (1)

    1. Department of Surgery
    ; The First Affiliated Hospital ; Sun Yat-sen University ; 58 Zhongshan II Road ; Guangzhou ; Guangdong ; 510080 ; China
    2. Department of Biochemistry and Molecular Biology
    ; Second Military Medical University ; 800 Xiangyin Road ; Shanghai ; 200433 ; China
    3. Department of Intensive Care Unit
    ; Zhongshan people鈥檚 Hospital ; 2 Sunwen East Road ; Zhongshan ; Guangdong ; 528403 ; China
  • 关键词:CNDP2 ; Colon cancer ; Poliferation ; Clinicopathological Characteristics ; RNA interference
  • 刊名:BMC Gastroenterology
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:14
  • 期:1
  • 全文大小:1,290 KB
  • 参考文献:1. Jemal, A, Bray, F, Center, MM, Ferlay, J, Ward, E, Forman, D (2011) Global cancer statistics. CA Cancer J Clin 61: pp. 69-90 CrossRef
    2. Bufill, JA (1990) Colorectal cancer: evidence for distinct genetic categories based on proximal or distal tumor location. Ann Intern Med 113: pp. 779-788 CrossRef
    3. Hutchins, G, Southward, K, Handley, K, Magill, L, Beaumont, C, Stahlschmidt, J, Richman, S, Chambers, P, Seymour, M, Kerr, D, Gray, R, Quirke, P (2011) Value of mismatch repair, KRAS, and BRAF mutations in predicting recurrence and benefits from chemotherapy in colorectal cancer. J Clin Oncol 29: pp. 1261-1270 CrossRef
    4. Teufel, M, Saudek, V, Ledig, JP, Bernhardt, A, Boularand, S, Carreau, A, Cairns, NJ, Carter, C, Cowley, DJ, Duverger, D, Ganzhorn, AJ, Guenet, C, Heintzelmann, B, Laucher, V, Sauvage, C, Smirnova, T (2003) Sequence identification and characterization of human carnosinase and a closely related non-specific dipeptidase. J Biol Chem 278: pp. 6521-6531 CrossRef
    5. Pandya, V, Ekka, MK, Dutta, RK, Kumaran, S (2011) Mass spectrometry assay for studying kinetic properties of dipeptidases: characterization of human and yeast dipeptidases. Anal Biochem 418: pp. 134-142 CrossRef
    6. Renner, C, Zemitzsch, N, Fuchs, B, Geiger, KD, Hermes, M, Hengstler, J, Gebhardt, R, Meixensberger, J, Gaunitz, F (2010) Carnosine retards tumor growth in vivo in an NIH3T3-HER2/neu mouse model. Mol Cancer 9: pp. 2 CrossRef
    7. Iovine, B, Iannella, ML, Nocella, F, Pricolo, MR, Bevilacqua, MA (2012) Carnosine inhibits KRAS-mediated HCT116 proliferation by affecting ATP and ROS production. Cancer Lett 315: pp. 122-128 CrossRef
    8. Ichinose, Y, Genka, K, Koike, T, Kato, H, Watanabe, Y, Mori, T, Iioka, S, Sakuma, A, Ohta, M (2003) NK421 Lung Cancer Surgery Group. Randomized double-blind placebo-controlled trial of bestatin in patients with resected stage I squamous-cell lung carcinoma. J Natl Cancer Inst 95: pp. 605-610 CrossRef
    9. Tripathi, A, King, C, de la Morenas, A, Perry, VK, Burke, B, Antoine, GA, Hirsch, EF, Kavanah, M, Mendez, J, Stone, M, Gerry, NP, Lenburg, ME, Rosenberg, CL (2008) Gene expression abnormalities in histologically normal breast epithelium of breast cancer patients. Int J Cancer 122: pp. 1557-1566 CrossRef
    10. Okamura, N, Masuda, T, Gotoh, A, Shirakawa, T, Terao, S, Kaneko, N, Suganuma, K, Watanabe, M, Matsubara, T, Seto, R, Matsumoto, J, Kawakami, M, Yamamori, M, Nakamura, T, Yagami, T, Sakaeda, T, Fujisawa, M, Nishimura, O, Okumura, K (2008) Quantitative proteomic analysis to discover potential diagnostic markers and therapeutic targets in human renal cell carcinoma. Proteomics 8: pp. 3194-3203 CrossRef
    11. Perroud, B, Ishimaru, T, Borowsky, AD, Weiss, RH (2009) Grade-dependent proteomics characterization of kidney cancer. Mol Cell Proteomics 8: pp. 971-985 CrossRef
    12. Lee, JH, Giovannetti, E, Hwang, JH, Petrini, I, Wang, Q, Voortman, J, Wang, Y, Steinberg, SM, Funel, N, Meltzer, PS, Wang, Y, Giaccone, G (2012) Loss of 18q22.3 involving the carboxypeptidase of glutamate-like gene is associated with poor prognosis in resected pancreatic cancer. Clin Cancer Res 18: pp. 524-533 CrossRef
    13. Zhang, P, Chan, DW, Zhu, Y, Li, JJ, Ng, IO, Wan, D, Gu, J (2006) Identification of carboxypeptidase of glutamate like-B as a candidate suppressor in cell growth and metastasis in human hepatocellular carcinoma. Clin Cancer Res 12: pp. 6617-6625 CrossRef
    14. Boldyrev, AA, Aldini, G, Derave, W (2013) Physiology and pathophysiology of carnosine. Physiol Rev 93: pp. 1803-1845 CrossRef
    15. Lindblom, A (2001) Different mechanisms in the tumorigenesis of proximal and distal colon cancers. Curr Opin Oncol 13: pp. 63-69 CrossRef
    16. Nawa, T, Kato, J, Kawamoto, H, Okada, H, Yamamoto, H, Kohno, H, Endo, H, Shiratori, Y (2008) Differences between right- and left-sided colon cancer in patient characteristics, cancer morphology and histology. J Gastroenterol Hepatol 23: pp. 418-423 CrossRef
    17. Benedix, F, Kube, R, Meyer, F, Schmidt, U, Gastinger, I, Lippert, H (2010) Colon/Rectum Carcinomas (Primary Tumor) Study Group. Comparison of 17,641 patients with right- and left-sided colon cancer: differences in epidemiology, perioperative course, histology, and survival. Dis Colon Rectum 53: pp. 57-64 CrossRef
    18. Knoblich, JA, Sauer, K, Jones, L, Richardson, H, Saint, R, Lehner, CF (1994) Cyclin E controls S phase progression and its down-regulation during Drosophila embryogenesis is required for the arrest of cell proliferation. Cell 77: pp. 107-120 CrossRef
    19. Aleem, E, Kiyokawa, H, Kaldis, P (2005) Cdc2-cyclin E complexes regulate the G1/S phase transition. Nat Cell Biol 7: pp. 831-836 CrossRef
    20. Kitahara, K, Yasui, W, Kuniyasu, H, Yokozaki, H, Akama, Y, Yunotani, S, Hisatsugu, T, Tahara, E (1995) Concurrent amplification of cyclin E and CDK2 genes in colorectal carcinomas. Int J Cancer 62: pp. 25-28 CrossRef
    21. Pinto, AE, Andr茅, S, Pereira, T, N贸brega, S, Soares, J (2001) Prognostic comparative study of S-phase fraction and Ki-67 index in breast carcinoma. J Clin Pathol 54: pp. 543-549 CrossRef
    22. Pinto, AE, Silva, GL, Pereira, T, Cabrera, RA, Santos, JR, Leite, V (2012) S-phase fraction and ploidy as predictive markers in primary disease and recurrence of papillary thyroid carcinoma. Clin Endocrinol (Oxf) 77: pp. 302-309 CrossRef
    23. Khanna, R, Agarwal, A, Khanna, S, Basu, S, Khanna, AK (2010) S-phase fraction and DNA ploidy in oral leukoplakia. ANZ J Surg 80: pp. 548-551 CrossRef
    24. Salud, A, Porcel, JM, Raikundalia, B, Camplejohn, RS, Taub, NA (1999) Prognostic significance of DNA ploidy, S-phase fraction, and P-glycoprotein expression in colorectal cancer. J Surg Oncol 72: pp. 167-174 CrossRef
    25. Bazan, V, Migliavacca, M, Zanna, I, Tubiolo, C, Corsale, S, Cal貌, V, Amato, A, Cammareri, P, Latteri, F, Grassi, N, Fulfaro, F, Porcasi, R, Morello, V, Nuara, RB, Dardanoni, G, Salerno, S, Valerio, MR, Dusonchet, L, Gerbino, A, Gebbia, N, Tomasino, RM, Russo, A (2002) DNA ploidy and S-phase fraction, but not p53 or NM23-H1 expression, predict outcome in colorectal cancer patients. Result of a 5-year prospective study. J Cancer Res Clin Oncol 128: pp. 650-658 CrossRef
    26. Mollah, ML, Park, DK, Park, HJ (2012) Cordyceps militaris Grown on Germinated Soybean Induces G2/M Cell Cycle Arrest through Downregulation of Cyclin B1 and Cdc25c in Human Colon Cancer HT-29 Cells. Evid Based Complement Alternat Med 2012: pp. 249217 CrossRef
    27. Archer, SY, Johnson, J, Kim, HJ, Ma, Q, Mou, H, Daesety, V, Meng, S, Hodin, RA (2005) The histone deacetylase inhibitor butyrate downregulates cyclin B1 gene expression via a p21/WAF-1-dependent mechanism in human colon cancer cells. Am J Physiol Gastrointest Liver Physiol 289: pp. 696-703
    28. Baker, NE, Yu, SY (2001) The EGF receptor defines domains of cell cycle progression and survival to regulate cell number in the developing Drosophila eye. Cell 104: pp. 699-708 CrossRef
    29. Lim, YC, Cha, YY (2011) Epigallocatechin-3-gallate induces growth inhibition and apoptosis of human anaplastic thyroid carcinoma cells through suppression of EGFR/ERK pathway and cyclin B1/CDK1 complex. J Surg Oncol 104: pp. 776-780 CrossRef
    30. The pre-publication history for this paper can be accessed here: http://www.biomedcentral.com/1471-230X/14/96/prepub
  • 刊物主题:Gastroenterology; Internal Medicine;
  • 出版者:BioMed Central
  • ISSN:1471-230X
文摘
Background Cytosolic nonspecific dipetidase (CN2) belongs to the family of M20 metallopeptidases. It was stated in previous articles that higher expression levels of CN2 were observed in renal cell carcinoma and breast cancer. Our study explored the correlation between CN2 and colon carcinogenesis. Methods We analysed the relationship between 183 patients clinicopathological characteristics and its CN2 expression. To detect the levels of CN2 in colon cancer cell lines and colon cancer tissues by western blot. To verify cell proliferation in colon cancer cells with knockdown of CNDP2 and explore the causes of these phenomena. Results The expression levels of CN2 in clinical colon tumors and colon cancer cell lines were significantly higher than that in normal colon mucosa and colon cell lines. The difference in CN2 levels was associated with tumor location (right- and left-sided colon cancer), but there was no significant association with age, gender, tumor size, tumor grade, tumor stage or serum carcinoembryonic antigen (CEA). Knockdown of CNDP2 inhibited cell proliferation, blocked cell cycle progression and retarded carcinogenesis in an animal model. The signaling pathway through which knockdown of CNDP2 inhibited cell proliferation and tumorigenesis involved in EGFR, cyclin B1 and cyclin E. Conclusions Knockdown of CNDP2 can inhibit the proliferation of colon cancer in vitro and retarded carcinogenesis in vivo.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700