Interactive cellular proteins related to classical swine fever virus non-structure protein 2 by yeast two-hybrid analysis
详细信息    查看全文
  • 作者:Kai Kang (1)
    Kangkang Guo (1)
    Qinhai Tang (2)
    Yanming Zhang (1)
    Jiang Wu (1)
    Weiwei Li (1)
    Zhi Lin (1)
  • 关键词:Interactive cellular protein ; Yeast two ; hybrid ; NS2 protein ; Swine umbilical vein endothelial cell line (SVUEC)
  • 刊名:Molecular Biology Reports
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:39
  • 期:12
  • 页码:10515-10524
  • 全文大小:690KB
  • 参考文献:1. Gallei A, Blome S, Gilgenbach S, Tautz N, Moennig V, Becher P (2008) Cytopathogenicity of classical swine fever virus correlates with attenuation in the natural host. J Virol 82:9717-729 CrossRef
    2. Lackner T, Müller A, Pankraz A, Becher P, Thiel HJ, Gorbalenya AE et al (2004) Temporal modulation of an autoprotease is crucial for replication and pathogenicity of an RNA virus. J Virol 78:10765-0775 CrossRef
    3. Moulin HR, Seuberlich T, Bauhofer O, Bennett LC, Tratschin JD, Hofmann MA et al (2007) Nonstructural proteins NS2-3 and NS4A of classical swine fever virus: essential features for infectious particle formation. Virology 365:376-89 CrossRef
    4. Moser C, Stettler P, Tratschin JD, Hofmann MA (1999) Cytopathogenic and noncytopathogenic RNA replicons of classical swine fever virus. J Virol 73:7787-794
    5. Tang QH, Zhang YM, Xu YZ, He L, Dai C, Sun P (2010) Up-regulation of integrin beta 3 expression in porcine vascular endothelial cells cultured in vitro by classical swine fever virus. Vet Immunol Immunopathol 113:237-42 CrossRef
    6. Tang QH, Zhang YM, Fan L, Tong G, He L, Dai C (2010) Classic swine fever virus NS2 protein leads to the induction of cell cycle arrest at S-phase and endoplasmic reticulum stress. Virol J 7:4 CrossRef
    7. Guo KK, Tang QH, Zhang YM, Kang K, He L (2011) Identification of two internal signal peptide sequences: critical for classical swine fever virus non-structural protein 2 to trans-localize to the endoplasmic reticulum. Virol J 8:236 CrossRef
    8. Reed KE, Rice CM (1999) Expression and characterization of the HCV NS2 protease. Methods Mol Med 19:331-42
    9. Hong HX, Zhang YM, Xu H, Su ZY, Sun P (2007) Immortalization of swine umbilical vein endothelial cells with human telomerase reverse transcriptase. Mol Cells 24:358-63
    10. Kanehisa M, Goto S, Kawashima S, Nakaya A (2002) The KEGG databases at GenomeNet. Nucleic Acids Res 30:42-6 CrossRef
    11. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P et al (2011) The STRING database in 2011, functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39:D561–D568 CrossRef
    12. Coates PJ, Hall PA (2003) The yeast two-hybrid system for identifying protein–protein interactions. J Pathol 199:4- CrossRef
    13. Lentze N, Auerbach D (2008) The yeast two-hybrid system and its role in drug discovery. Expert Opin Ther Targets 12:505-15 CrossRef
    14. MacFarlane SA, Uhrig JF (2008) Yeast two-hybrid assay to identify host-virus interactions. Methods Mol Biol 451:649-72 CrossRef
    15. Smolikov S, Schild-Prufert K, Colaiacovo MP (2009) A yeast two-hybrid screen for SYP-3 interactors identifies SYP-4, a component required for synaptonemal complex assembly and chiasma formation in / Caenorhabditis elegans meiosis. PLoS Genet 5:e1000669 CrossRef
    16. Tang Q, Guo K, Kang K, Zhang Y, He L, Wang J (2011) Classical swine fever virus NS2 protein promotes interleukin-8 expression and inhibits MG132-induced apoptosis. Virus Genes 42:355-62 CrossRef
    17. Fu NY, Sukumaran SK, Yu VC (2007) Inhibition of ubiquitin-mediated degradation of MOAP-1 by apoptotic stimuli promotes Bax function in mitochondria. Proc Natl Acad Sci USA 104:10051-0056 CrossRef
    18. Lee SS, Fu NY, Sukumaran SK, Wan KF, Wan Q, Yu VC (2009) TRIM39 is a MOAP-1-binding protein that stabilizes MOAP-1 through inhibition of its poly-ubiquitination process. Exp Cell Res 315:1313-325 CrossRef
    19. Tan KO, Tan KM, Chan SL, Yee KS, Bevort M, Ang KC et al (2001) MAP-1, a novel proapoptotic protein containing a BH3-like motif that associates with Bax through its Bcl-2 homology domains. J Biol Chem 276:2802-807 CrossRef
    20. Vos MD, Dallol A, Eckfeld K, Allen NP, Donninger H, Hesson LB et al (2006) The RASSF1A tumor suppressor activates Bax via MOAP-1. J Biol Chem 281:4557-563 CrossRef
    21. Baksh S, Tommasi S, Fenton S, Yu VC, Martins LM, Pfeifer GP et al (2005) The tumor suppressor RASSF1A and MAP-1 link death receptor signaling to Bax conformational change and cell death. Mol Cell 18:637-50 CrossRef
    22. Schuller M, Jenne D, Voltz R (2005) The human PNMA family: novel neuronal proteins implicated in paraneoplastic neurological disease. J Neuroimmunol 169:172-76 CrossRef
    23. Friedlander R, Jarosch E, Urban J, Volkwein C, Sommer T (2000) A regulatory link between ER-associated protein degradation and the unfolded-protein response. Nat Cell Biol 2:379-84 CrossRef
    24. Rao RV, Bredesen DE (2004) Misfolded proteins, endoplasmic reticulum stress and neurodegeneration. Curr Opin Cell Biol 16:653-62 CrossRef
    25. Terada K, Mori M (2000) Human DnaJ homologs dj2 and dj3, and bag-1 are positive cochaperones of hsc70. J Biol Chem 275:24728-4734 CrossRef
    26. Knox C, Luke GA, Blatch GL, Pesce ER (2011) Heat shock protein 40 (Hsp40) plays a key role in the virus life cycle. Virus Res 160:15-4 CrossRef
    27. Yamazaki S, Uchiumi A, Katagata Y (2011) Hsp40 regulates the amount of keratin proteins via ubiquitin-proteasome. Int J Mol Med 29:165-68
    28. Hodson C, Cole AR, Lewis LP, Miles JA, Purkiss A, Walden H (2011) Structural analysis of human FANCL, the E3 ligase in the Fanconi anemia pathway. J Biol Chem 286:32628-2637 CrossRef
    29. Meetei AR, Yan Z, Wang W (2004) FANCL replaces BRCA1 as the likely ubiquitin ligase responsible for FANCD2 monoubiquitination. Cell Cycle 3:179-81 CrossRef
    30. Li X, Zhang J, Cao Z, Wu J, Shi Y (2006) Solution structure of GOPC PDZ domain and its interaction with the C-terminal motif of neuroligin. Protein Sci 15:2149-158 CrossRef
    31. Yao R, Maeda T, Takada S, Noda T (2001) Identification of a PDZ domain containing Golgi protein, GOPC, as an interaction partner of frizzled. Biochem Biophys Res Commun 286:771-78 CrossRef
    32. Cheng J, Moyer BD, Milewski M, Loffing J, Ikeda M, Mickle JE et al (2002) A Golgi-associated PDZ domain protein modulates cystic fibrosis transmembrane regulator plasma membrane expression. J Biol Chem 277:3520-529 CrossRef
    33. Shahnazari S, Brumell JH (2009) Eating twice for the sake of immunity: a phagocytic receptor that activates autophagy. Cell Host Microbe 6:297-98 CrossRef
    34. Otani H, Okumura A, Nagai K, Okumura N (2008) Colocalization of a carnosine-splitting enzyme, tissue carnosinase (CN2)/cytosolic non-specific dipeptidase 2 (CNDP2), with histidine decarboxylase in the tuberomammillary nucleus of the hypothalamus. Neurosci Lett 445:166-69 CrossRef
    35. Zhang P, Chan DW, Zhu Y, Li JJ, Ng IO, Wan D et al (2006) Identification of carboxypeptidase of glutamate like-B as a candidate suppressor in cell growth and metastasis in human hepatocellular carcinoma. Clin Cancer Res 12:6617-625 CrossRef
    36. Hwang SO, Boswell SA, Seo JS, Lee SW (2008) Novel oxidative stress-responsive gene ERS25 functions as a regulator of the heat-shock and cell death response. J Biol Chem 283:13063-3069 CrossRef
    37. Matsuda A, Suzuki Y, Honda G, Muramatsu S, Matsuzaki O, Nagano Y et al (2003) Large-scale identification and characterization of human genes that activate NF-kappaB and MAPK signaling pathways. Oncogene 22:3307-318 CrossRef
    38. Russo A, Catillo M, Esposito D, Briata P, Pietropaolo C, Russo G (2011) Autoregulatory circuit of human rpL3 expression requires hnRNP H1, NPM and KHSRP. Nucleic Acids Res 39:7576-585 CrossRef
    39. Russo A, Siciliano G, Catillo M, Giangrande C, Amoresano A, Pucci P et al (2010) hnRNP H1 and intronic G runs in the splicing control of the human rpL3 gene. Biochim Biophys Acta 1799:419-28 CrossRef
    40. Stark M, Bram EE, Akerman M, Mandel-Gutfreund Y, Assaraf YG (2011) Heterogeneous nuclear ribonucleoprotein H1/H2-dependent unsplicing of thymidine phosphorylase results in anticancer drug resistance. J Biol Chem 286:3741-754 CrossRef
    41. Chang TC, Yamashita A, Chen CY, Yamashita Y, Zhu W, Durdan S et al (2004) UNR, a new partner of poly (A)-binding protein, plays a key role in translationally coupled mRNA turnover mediated by the c-fos major coding-region determinant. Genes Dev 8:2010-023 CrossRef
    42. Hunt SL, Hsuan JJ, Totty N, Jackson RJ (1999) unr, a cellular cytoplasmic RNA-binding protein with five cold-shock domains, is required for internal initiation of translation of human rhinovirus RNA. Genes Dev 13:437-48 CrossRef
    43. Mihailovich M, Militti C, Gabaldon T, Gebauer F (2010) Eukaryotic cold shock domain proteins: highly versatile regulators of gene expression. BioEssays 32:109-18 CrossRef
    44. Boussadia O, Niepmann M, Creancier L, Prats AC, Dautry F, Jacquemin-Sablon H (2003) Unr is required in vivo for efficient initiation of translation from the internal ribosome entry sites of both rhinovirus and poliovirus. J Virol 77:3353-359 CrossRef
    45. Cortes-Hernandez P, Vazquez-Memije ME, Garcia JJ (2007) ATP6 homoplasmic mutations inhibit and destabilize the human F1F0-ATP synthase without preventing enzyme assembly and oligomerization. J Biol Chem 282:1051-058 CrossRef
    46. Mau BL, Lee HM, Tzen CY (2005) Identification of human-specific adaptation sites of ATP6. Ann N Y Acad Sci 1042:142-47 CrossRef
  • 作者单位:Kai Kang (1)
    Kangkang Guo (1)
    Qinhai Tang (2)
    Yanming Zhang (1)
    Jiang Wu (1)
    Weiwei Li (1)
    Zhi Lin (1)

    1. College of Veterinary Medicine, Northwest A&F University, No. 3 Taicheng Road, Yangling, 712100, Shanxi, People’s Republic of China
    2. Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, Heilongjiang, People’s Republic of China
  • ISSN:1573-4978
文摘
Classical swine fever is caused by the classical swine fever virus (CSFV), which has a special affinity to endothelial cells. This fever is characterized by hemorrhage and necrosis of vascular injury. Very little information is available on the interaction between vascular endothelial cells and CSFV. In the current report, the cDNA library of swine umbilical vein endothelial cell (SUVEC) was constructed by the switching mechanism at 5-end of the RNA transcript approach. The yeast two-hybrid (Y2H) system was adopted to screen non-structure?2 protein (NS2) interactive proteins in the SUVEC line. Alignment with the NCBI database revealed 11 interactive proteins: GOPC, HNRNPH1, DNAJA1, ATP6, CSDE1, CNDP2, FANCL, TMED4, DNAJA4, MOAP1, and PNMA1. These proteins were mostly related to apoptosis, stress response and oxidation reduction, or metabolism. In the protein interaction network constructed based on proteins with NS2, the more important proteins were MOAP1, DNAJA1, GOPC, FANCL, TMED4, and CSDE1. The interactions detected by the Y2H should be regarded only as preliminary indications. However, the CSFV NS2 interactive proteins in the SUVEC cDNA library obtained in the current study provides valuable information for gaining a better understanding of the host protein-virus interactions of the CSFV NS2 protein.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700