Mass production of Co3O4@CeO2 core@shell nanowires for catalytic CO oxidation
详细信息    查看全文
  • 作者:Jiangman Zhen ; Xiao Wang ; Dapeng Liu ; Zhuo Wang ; Junqi Li ; Fan Wang…
  • 关键词:Co3O4@CeO2 ; core@shell ; nanowires ; CO oxidation ; synergistic effects
  • 刊名:Nano Research
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:8
  • 期:6
  • 页码:1944-1955
  • 全文大小:1,936 KB
  • 参考文献:[1]Hu, L. H.; Sun, K. Q.; Peng, Q.; Xu, B. Q.; Li, Y. D. Surface active sites on Co3O4 nanobelt and nanocube model catalysts for CO oxidation. Nano Res. 2010, 3, 363-68.View Article
    [2]Xie, X. W.; Li, Y.; Liu, Z. Q.; Haruta, M.; Shen, W. J. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 2009, 458, 746-49.View Article
    [3]Song, W. Q.; Poyraz, A. S.; Meng, Y. T.; Ren, Z.; Chen, S. Y.; Suib, S. L. Mesoporous Co3O4 with controlled porosity: Inverse micelle synthesis and high-performance catalytic CO oxidation at ?0 °C. Chem. Mater. 2014, 26, 4629-639.View Article
    [4]Pandey, A. D.; Jia, C. J.; Schmidt, W.; Leoni, M.; Schwickardi, M.; Schuth, F.; Weidenthaler, C. Size-controlled synthesis and microstructure investigation of Co3O4 nanoparticles for low-temperature CO oxidation. J. Phys. Chem. C 2012, 116, 19405-9412.View Article
    [5]Jia, C. J.; Schwickardi, M.; Weidenthaler, C.; Schmidt, W.; Korhonen, S.; Weckhuysen, B. M.; Schuth, F. Co3O4-SiO2 nanocomposite: A very active catalyst for CO oxidation with unusual catalytic behavior. J. Am. Chem. Soc. 2011, 133, 11279-1288.View Article
    [6]Lu, Z. H.; Jiang, H. L.; Yadav, M.; Aranishi, K.; Xu, Q. Synergistic catalysis of Au-Co@SiO2 nanospheres in hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. J. Mater. Chem. 2012, 22, 5065-071.View Article
    [7]Arnal, P. M.; Comotti, M.; Schüth, F. High-temperature-stable catalysts by hollow sphere encapsulation. Angew. Chem. Int. Ed. 2006, 45, 8224-227.View Article
    [8]Ge, J. P.; Zhang, Q.; Zhang, T. R.; Yin, Y. D. Core-satellite nanocomposite catalysts protected by a porous silica shell: Controllable reactivity, high stability, and magnetic recyclability. Angew. Chem. Int. Ed. 2008, 47, 8924-928.View Article
    [9]Zhang, T. T.; Zhao, H. Y.; He, S. N.; Liu, K.; Liu, H. Y.; Yin, Y. D.; Gao, C. B. Unconventional route to encapsulated ultrasmall gold nanoparticles for high-temperature catalysis. Acs. Nano 2014, 8, 7297-304.View Article
    [10]Yu, K.; Wu, Z. C.; Zhao, Q. R.; Li, B. X.; Xie, Y. High-temperature-stable Au@SnO2 core/shell supported catalyst for CO oxidation. J. Phys. Chem. C 2008, 112, 2244-247.View Article
    [11]Zhou, H. P.; Wu, H. S.; Shen, J.; Yin, A. X.; Sun, L. D.; Yan, C. H. Thermally stable Pt/CeO2 hetero-nanocomposites with high catalytic activity. J. Am. Chem. Soc. 2010, 132, 4998-999.View Article
    [12]Zhang, J.; Li, L. P.; Huang, X. S.; Li, G. S. Fabrication of Ag-CeO2 core-shell nanospheres with enhanced catalytic performance due to strengthening of the interfacial interactions. J. Mater. Chem. 2012, 22, 10480-0487.View Article
    [13]Lee, I.; Zhang, Q.; Ge, J. P.; Yin, Y. D.; Zaera, F. Encapsulation of supported Pt nanoparticles with mesoporous silica for increased catalyst stability. Nano Res. 2011, 4, 115-23.View Article
    [14]Chen, J. C.; Zhang, R. Y.; Han, L.; Tu, B.; Zhao, D. Y. One-pot synthesis of thermally stable gold@mesoporous silica core-shell nanospheres with catalytic activity. Nano Res. 2013, 6, 871-79.View Article
    [15]Zhang, N.; Xu, Y. J. Aggregation- and leaching-resistant, reusable, and multifunctional Pd@CeO2 as a robust nanocatalyst achieved by a hollow core-shell strategy. Chem. Mater. 2013, 25, 1979-988.View Article
    [16]Lin, F.; Hoang, D. T.; Tsung, C. K.; Huang, W. Y.; Lo, S. H. Y.; Wood, J. B.; Wang, H.; Tang, J. Y.; Yang, P. D. Catalytic properties of Pt cluster-decorated CeO2 nanostructures. Nano Res. 2011, 4, 61-1.View Article
    [17]Zhang, Y.; Hou, F.; Tan, Y. W. CeO2 nanoplates with a hexagonal structure and their catalytic applications in highly selective hydrogenation of substituted nitroaromatics. Chem. Commun. 2012, 48, 2391-393.View Article
    [18]Lee, Y. J.; He, G. H.; Akey, A. J.; Si, R.; Flytzani-Stephanopoulos, M.; Herman, I. P. Raman analysis of mode softening in nanoparticle CeO2-δ and Au-CeO2-δ during CO oxidation. J. Am. Chem. Soc. 2011, 133, 12952-2955.View Article
    [19]Xu, L. S; Ma, Y. S.; Zhang, Y. L.; Jiang, Z. Q.; Huang, W. X. Direct evidence for the interfacial oxidation of CO with hydroxyls catalyzed by Pt/oxide nanocatalysts. J. Am. Chem. Soc. 2009, 131, 16366-6367.View Article
    [20]Tian, J.; Sang, Y. H.; Zhao, Z. H.; Zhou, W. J.; Wang, D. Z.; Kang, X. L.; Liu, H.; Wang, J. Y.; Chen, S. W.; Cai, H. Q.; et al. Enhanced photocatalytic performances of CeO2/TiO2 nanobelt heterostructures. Small 2013, 9, 3864-872.View Article
    [21]Mak, A. C.; Yu, C. L.; Yu, J. C.; Zhang, Z. D.; Ho, C. A lamellar ceria structure with encapsulated platinum nanoparticles. Nano Res. 2008, 1, 474-82.View Article
    [22]Wang, X.; Liu, D. P.; Song, S. Y.; Zhang, H. J. Pt@CeO2 multicore@shell self-assembled nanospheres: Clean synthesis, structure optimization, and catalytic applications. J. Am. Chem. Soc. 2013, 135, 15864-5872.View Article
    [23]Kayama, T.; Yamazaki, K.; Shinjoh, H. Nanostructured ceria-silver synthesized in a one-pot redox reaction catalyzes carbon o
  • 作者单位:Jiangman Zhen (1) (2)
    Xiao Wang (1)
    Dapeng Liu (1)
    Zhuo Wang (1) (2)
    Junqi Li (1) (2)
    Fan Wang (1) (2)
    Yinghui Wang (1)
    Hongjie Zhang (1)

    1. State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
    2. University of the Chinese Academy of Sciences, Beijing, 100039, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
In this study, Co3O4@CeO2 core@shell nanowires were successfully prepared via thermal decomposition of Co(CO3)0.5(OH)·0.11H2O@CeO2 core@shell nanowire precursors. As a CO oxidation catalyst, Co3O4@CeO2 shows remarkably enhanced catalytic performance compared to Co3O4 nanowires and CeO2 nanoparticles (NPs), indicating obvious synergistic effects between the two components. It also suggests that the CeO2 shell coating can effectively prevent Co3O4 nanowires from agglomerating, hence effecting a substantial improvement in the structural stability of the Co3O4 catalyst. Furthermore, the fabrication of the well-dispersed core@shell structure results in a maximized interface area between Co3O4 and CeO2, as well as a reduced Co3O4 size, which may be responsible for the enhanced catalytic activity of Co3O4@CeO2. Further examination revealed that CO oxidation may occur at the interface of Co3O4 and CeO2. The influence of calcination temperatures and the component ratio between Co3O4 and CeO2 were then investigated in detail to determine the catalytic performance of Co3O4@CeO2 core@shell nanowires, the best of which was obtained by calcination at 250 °C for 3 h with a Ce molar concentration of about 38.5%. This sample achieved 100% CO conversion at a reduced temperature of 160 °C. More importantly, more than 2.5 g of the Co3O4@CeO2 core@shell nanowires were produced in one pot by this simple process, which may be beneficial for practical applications as automobile-exhaust gas-treatment catalysts.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700