The hitchhiker’s guide to PGC- isoform structure and biological functions
详细信息    查看全文
  • 作者:Vicente Martínez-Redondo ; Amanda T. Pettersson ; Jorge L. Ruas
  • 关键词:Alternative promoter ; Alternative splicing ; Brown adipose tissue ; Hypertrophy ; Isoforms ; NT ; PGC ; ; PGC ; ; PGC ; ; b ; PGC ; 4 ; Review ; Skeletal muscle
  • 刊名:Diabetologia
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:58
  • 期:9
  • 页码:1969-1977
  • 全文大小:723 KB
  • 参考文献:1.Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829-39PubMed View Article
    2.Fernandez-Marcos PJ, Auwerx J (2011) Regulation of PGC-, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr 93:884S-90SPubMed Central PubMed View Article
    3.Villena JA (2015) New insights into PGC-1 coactivators: redefining their role in the regulation of mitochondrial function and beyond. FEBS J 282:647-72PubMed View Article
    4.Xin D, Hu L, Kong X (2008) Alternative promoters influence alternative splicing at the genomic level. PLoS One 3:e2377PubMed Central PubMed View Article
    5.Wang ET, Sandberg R, Luo S et al (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456:470-76PubMed Central PubMed View Article
    6.Lin J, Puigserver P, Donovan J, Tarr P, Spiegelman BM (2002) Peroxisome proliferator-activated receptor gamma coactivator 1β (PGC-1β), a novel PGC-1-related transcription coactivator associated with host cell factor. J Biol Chem 277:1645-648PubMed View Article
    7.Andersson U, Scarpulla RC (2001) Pgc-1-related coactivator, a novel, serum-inducible coactivator of nuclear respiratory factor 1-dependent transcription in mammalian cells. Mol Cell Biol 21:3738-749PubMed Central PubMed View Article
    8.Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1:361-70PubMed View Article
    9.Wallberg AE, Yamamura S, Malik S, Spiegelman BM, Roeder RG (2003) Coordination of p300-mediated chromatin remodeling and TRAP/mediator function through coactivator PGC-. Mol Cell 12:1137-149PubMed View Article
    10.Li H, Bingham PM (1991) Arginine/serine-rich domains of the su(w a) and tra RNA processing regulators target proteins to a subnuclear compartment implicated in splicing. Cell 67:335-42PubMed View Article
    11.Monsalve M, Wu Z, Adelmant G, Puigserver P, Fan M, Spiegelman BM (2000) Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1. Mol Cell 6:307-16PubMed View Article
    12.Wu H, Kanatous SB, Thurmond FA et al (2002) Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science 296:349-52PubMed View Article
    13.Handschin C, Rhee J, Lin J, Tarr PT, Spiegelman BM (2003) An autoregulatory loop controls peroxisome proliferator-activated receptor γ coactivator expression in muscle. Proc Natl Acad Sci 100:7111-116PubMed Central PubMed View Article
    14.Yoon JC, Puigserver P, Chen G et al (2001) Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413:131-38PubMed View Article
    15.Suwa M, Nakano H, Kumagai S (2003) Effects of chronic AICAR treatment on fiber composition, enzyme activity, UCP3, and PGC-1 in rat muscles. J Appl Physiol 95:960-68PubMed View Article
    16.Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10:295-04PubMed View Article
    17.Barres R, Yan J, Egan B et al (2012) Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab 15:405-11PubMed View Article
    18.Ling C, del Guerra S, Lupi R et al (2008) Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia 51:615-22PubMed Central PubMed View Article
    19.Barres R, Kirchner H, Rasmussen M et al (2013) Weight loss after gastric bypass surgery in human obesity remodels promoter methylation. Cell Rep 3:1020-027PubMed View Article
    20.Fan M, Rhee J, St-Pierre J et al (2004) Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-: modulation by p38 MAPK. Genes Dev 18:278-89PubMed Central PubMed View Article
    21.Li X, Monks B, Ge Q, Birnbaum MJ (2007) Akt/PKB regulates hepatic metabolism by directly inhibiting PGC- transcription coactivator. Nature 447:1012-016PubMed View Article
    22.Lustig Y, Ruas JL, Estall JL et al (2011) Separation of the gluconeogenic and mitochondrial functions of PGC- through S6 kinase. Genes Dev 25:1232-244PubMed Central PubMed View Article
    23.Jager S, Handschin C, St-Pierre J, Spiegelman BM (2007) AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A 104:12017-2022PubMed Central PubMed View Article
    24.Olson BL, Hock MB, Ekholm-Reed S et al (2008) SCFCdc4 acts antagonistically to the PGC-1alpha transcriptional coactivator by targeting it for ubiquitin-mediated proteolysis. Genes Dev 22:252-64PubMed Central PubMed View Article
    25.Lerin C, Rodgers JT, Kalume DE, Kim SH, Pandey A, Puigserver P (2006) GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-. Cell Metab 3:429-38PubMed View Article
    26.Gerhart-Hines Z, Rodgers JT, Bare O et al (2007) Met
  • 作者单位:Vicente Martínez-Redondo (1)
    Amanda T. Pettersson (1)
    Jorge L. Ruas (1)

    1. Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177, Stockholm, Sweden
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Internal Medicine
    Metabolic Diseases
    Human Physiology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0428
文摘
Proteins of the peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1 (PGC-1) family of transcriptional coactivators coordinate physiological adaptations in many tissues, usually in response to demands for higher nutrient and energy supply. Of the founding members of the family, PGC- (also known as PPARGC1A) is the most highly regulated gene, using multiple promoters and alternative splicing to produce a growing number of coactivator variants. PGC- promoters are selectively active in distinct tissues in response to specific stimuli. To date, more than ten novel PGC- isoforms have been reported to be expressed from a novel promoter (PGC--b, PGC--c), to undergo alternative splicing (NT-PGC-) or both (PGC-2, PGC-3, PGC-4). The resulting proteins display differential regulation and tissue distribution and, most importantly, exert specific biological functions. In this review we discuss the structural and functional characteristics of the novel PGC- isoforms, aiming to provide an integrative view of this constantly expanding system of transcriptional coactivators.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700