PGC- regulates the cell cycle through ATP and ROS in CH1 cells
详细信息    查看全文
  • 作者:Xu-feng Fu ; Kun Yao ; Xing Du ; Yan Li…
  • 关键词:Peroxisome proliferator ; activated receptor ; γ coactivator (PGC ; ) ; Mitochondria ; Oxidative phosphorylation (OXPHOS) ; Cell cycle ; CyclinD1 ; CyclinB1 ; 过氧化物酶体增殖物受体γ 共激活因子(PGC ; ) ; 线粒体
  • 氧化磷酸化 细胞周期 ; CyclinD1 ; CyclinB1 ; Q25
  • 刊名:Journal of Zhejiang University SCIENCE B
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:17
  • 期:2
  • 页码:136-146
  • 全文大小:1,634 KB
  • 参考文献:Acín-Pérez, P.R., Fernández, S.P., Peleato, M.L., et al., 2008. Respiratory active mitochondrial supercomplexes. Mol. Cel., 32(4):529–539. http://​dx.​doi.​org/​10.​1016/​j.​molcel.​2008.​10.​021CrossRef
    Althoff, T., Mills, D.J., Popot, J.L., et al., 2011. Arrangement of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1. EMBO J., 30(22): 4652–4664. http://​dx.​doi.​org/​10.​1038/​emboj.​2011.​324PubMedCentral CrossRef PubMed
    Bertoli, C., Skotheim, J.M., Bruin, R.A., 2013. Control of cell cycle transcription during G1 and S phases. Nat. Rev. Mol. Cell Biol., 14(8):518–528. http://​dx.​doi.​org/​10.​1038/​nrm3629PubMedCentral CrossRef PubMed
    Cannon, B., Houstek, J., Nedergaard, J., 1998. Brown adipose tissue: more than an effector of thermogenesis? Ann. NY Acad. Sci., 856:171–187. http://​dx.​doi.​org/​10.​1111/​j.​1749-6632.​1998.​tb08325.​xCrossRef PubMed
    Chaturvedi, R.K., Beal, M.F., 2013. Mitochondrial diseases of the brain. Free Radical Biol. Med., 63:1–29. http://​dx.​doi.​org/​10.​1016/​j.​freeradbiomed.​2013.​03.​018CrossRef
    Chen, G., Dai, J., Tan, S., et al., 2014. MTERF1 regulates the oxidative phosphorylation activity and cell proliferation in HeLa cells. Acta Biochim. Biophys. Sin., 46(6):512–521. http://​dx.​doi.​org/​10.​1093/​abbs/​gmu029CrossRef PubMed
    Chen, Q., Yin, G., Stewart, S., et al., 2010. Isolating the segment of the mitochondrial electron transport chain responsible for mitochondrial damage during cardiac ischemia. Biochem. Biophys. Res. Commun., 397(4):656–660. http://​dx.​doi.​org/​10.​1016/​j.​bbrc.​2010.​05.​137PubMedCentral CrossRef PubMed
    Dalton, S., 2013. G1 compartmentalization and cell fate coordination. Cel., 155(1):13–14. http://​dx.​doi.​org/​10.​1016/​j.​cell.​2013.​09.​015CrossRef
    Falk, M.J., Shen, L., Gonzalez, M., et al., 2015. Mitochondrial Disease Sequence Data Resource (MSeqDR): a global grass-roots consortium to facilitate deposition, curation, annotation, and integrated analysis of genomic data for the mitochondrial disease clinical and research communities. Mol. Genet. Metab., 114(3):388–396. http://​dx.​doi.​org/​10.​1016/​j.​ymgme.​2014.​11.​016CrossRef PubMed
    Hahm, E.R., Sakao, K., Singh, S.V., 2014. Honokiol activates reactive oxygen species-mediated cytoprotective autophagy in human prostate cancer cells. Prostat., 74(12): 1209–1221. http://​dx.​doi.​org/​10.​1002/​pros.​22837CrossRef
    Lehman, J.J., Barger, P.M., Kovacs, A., et al., 2000. Peroxisome proliferator-activated receptor γ coactivator-1 promotes cardiac mitochondrial biogenesis. J. Clin. Invest., 106(7): 847–856. http://​dx.​doi.​org/​10.​1172/​JCI10268PubMedCentral CrossRef PubMed
    Lin, J., Handschin, C., Spiegelman, B.M., 2005. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab., 1(6):361–370. http://​dx.​doi.​org/​10.​1016/​j.​cmet.​2005.​05.​004CrossRef PubMed
    Löbrich, M., Jeggo, P.A., 2007. The impact of a negligent G2/M checkpoint on genomic instability and cancer induction. Nat. Rev. Cance., 7(11):861–869. http://​dx.​doi.​org/​10.​1038/​nrc2248CrossRef
    Luckhart, S., Giulivi, C., Drexler, A.L., et al., 2013. Sustained activation of Akt elicits mitochondrial dysfunction to block Plasmodium falciparum infection in the mosquito host. PLoS Pathog., 9(2):e1003180. http://​dx.​doi.​org/​10.​1371/​journal.​ppat.​1003180PubMedCentral CrossRef PubMed
    Malumbres, M., Barbacid, M., 2009. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cance., 9(3):153–166. http://​dx.​doi.​org/​10.​1038/​nrc2602CrossRef
    Marinho, H.S., Real, C., Cyrne, L., et al., 2014. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol., 2:535–562. http://​dx.​doi.​org/​10.​1016/​j.​redox.​2014.​02.​006PubMedCentral CrossRef PubMed
    McBride, H.M., Neuspiel, M., Wasiak, S., 2006. Mitochondria: more than just a powerhouse. Curr. Biol., 16(14): R551–R560. http://​dx.​doi.​org/​10.​1016/​j.​cub.​2006.​06.​054CrossRef PubMed
    Meirhaeghe, A., Crowley, V., Lenaghan, C., et al., 2003. Characterization of the human, mouse and rat PGC1β (peroxisome-proliferator-activated receptor-γ co-activator 1β) gene in vitro and in vivo. Biochem. J., 373(Pt 1): 155–165. http://​dx.​doi.​org/​10.​1042/​bj20030200PubMedCentral CrossRef PubMed
    Miraglia, F., Betti, L., Palego, L., et al., 2015. Parkinson’s disease and a-synucleinopathies: from arising pathways to therapeutic challenge. Cent. Nerv. Syst. Agents Med. Chem., 15(2):109–116. http://​dx.​doi.​org/​10.​2174/​1871524915666150​421114338CrossRef PubMed
    Pieczenik, S.R., Neustadt, J., 2007. Mitochondrial dysfunction and molecular pathways of disease. Exp. Mol. Pathol., 83(1):84–92. http://​dx.​doi.​org/​10.​1016/​j.​yexmp.​2006.​09.​008CrossRef PubMed
    Rice, A.C., Ladd, A.C., Bennett, J.P., 2015. Postmortem Alzheimer’s disease hippocampi show oxidative phosphorylation gene expression opposite that of isolated pyramidal neurons. J. Alzheimer’s Dis., 45(4):1051–1059. http://​dx.​doi.​org/​10.​3233/​JAD-142937
    Rohas, L.M., St-Pierre, J., Uldry, M., et al., 2007. A fundamental system of cellular energy homeostasis regulated by PGC-1a. PNA., 104(19):7933–7938. http://​dx.​doi.​org/​10.​1073/​pnas.​0702683104CrossRef
    Schick, V., Majores, M., Fassunke, J., et al., 2007. Mutational and expression analysis of CDK1, cyclinA2 and cyclinB1 in epilepsy-associated glioneuronal lesions. Neuropathol. Appl. Neurobiol., 33(2):152–162. http://​dx.​doi.​org/​10.​1111/​j.​1365-2990.​2006.​00788.​xCrossRef PubMed
    Shiota, T., Traven, A., Lithgow, T., 2015. Mitochondrial biogenesis: cell-cycle-dependent investment in making mitochondria. Curr. Biol., 25(2):R78–R80. http://​dx.​doi.​org/​10.​1016/​j.​cub.​2014.​12.​006CrossRef PubMed
    Valero, T., 2014. Mitochondrial biogenesis: pharmacological approaches. Curr. Pharm. Des., 20(35):5507–5509. http://​dx.​doi.​org/​10.​2174/​1381612820351409​11142118CrossRef PubMed
    Vartak, R., Porras, C.A., Bai, Y., 2013. Respiratory supercomplexes: structure, function and assembly. Protein Cel., 4(8):582–590. http://​dx.​doi.​org/​10.​1007/​s13238-013-3032-yCrossRef
    Vega, R.B., Huss, J.M., Kelly, D.P., 2000. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor a in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol. Cell. Biol., 20(5):1868–1876. http://​dx.​doi.​org/​10.​1128/​MCB.​20.​5.​1868-1876.​2000PubMedCentral CrossRef PubMed
    Wallace, D.C., 2005. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet., 39(1):359–407. http://​dx.​doi.​org/​10.​1146/​annurev.​genet.​39.​110304.​095751PubMedCentral CrossRef PubMed
    Weinberg, F., Chandel, N.S., 2009. Mitochondrial metabolism and cancer. Ann. NY Acad. Sci., 1177(1):66–73. http://​dx.​doi.​org/​10.​1111/​j.​1749-6632.​2009.​05039.​xCrossRef PubMed
    Won, J.C., Park, J.Y., Kim, Y.M., et al., 2010. Peroxisome proliferator-activated receptor-γ coactivator 1-a overexpression prevents endothelial apoptosis by increasing ATP/ADP translocase activity. Arterioscler. Thromb. Vasc. Biol., 30(2):290–297. http://​dx.​doi.​org/​10.​1161/​ATVBAHA.​109.​198721CrossRef PubMed
    Wood, Z.A., Poole, L.B., Karplus, P.A., 2003. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Scienc., 300(5619):650–653. http://​dx.​doi.​org/​10.​1126/​science.​1080405CrossRef
    Wu, Z., Puigserver, P., Andersson, U., et al., 1999. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cel., 98(1):115–124. http://​dx.​doi.​org/​10.​1016/​S0092-8674(00)80611-xCrossRef
    Xiong, W., Jiao, Y., Huang, W., et al., 2012. Regulation of the cell cycle via mitochondrial gene expression and energy metabolism in HeLa cells. Acta Biochim. Bioph. Sin., 44(4):347–358. http://​dx.​doi.​org/​10.​1093/​abbs/​gms006CrossRef
    Xu, H., Lyu, S., Xu, J., et al., 2015. Effect of lipopolysaccharide on the hemocyte apoptosis of Eriocheir sinensis. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol)., 16(12): 971–979. http://​dx.​doi.​org/​10.​1631/​jzus.​B1500098CrossRef
    Zhang, Y., Ba, Y., Liu, C., et al., 2007. PGC-1a induces apoptosis in human epithelial ovarian cancer cells through a PPARγ-dependent pathway. Cell Res., 17(4): 363–373. http://​dx.​doi.​org/​10.​1038/​cr.​2007.​11CrossRef PubMed
  • 作者单位:Xu-feng Fu (1) (2)
    Kun Yao (1)
    Xing Du (1)
    Yan Li (1)
    Xiu-yu Yang (1)
    Min Yu (1)
    Mei-zhang Li (1)
    Qing-hua Cui (1)

    1. School of Life Sciences, Yunnan University, Kunming, 650091, China
    2. School of Medicine, Yunnan University, Kunming, 650091, China
  • 刊物主题:Biomedicine general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1862-1783
文摘
Peroxisome proliferator-activated receptor-γ coactivator (PGC-) is a transcriptional co-activator involved in mitochondrial biogenesis, respiratory capacity, and oxidative phosphorylation (OXPHOS). PGC- plays an important role in cellular metabolism and is associated with tumorigenesis, suggesting an involvement in cell cycle progression. However, the underlying mechanisms mediating its involvement in these processes remain unclear. To elucidate the signaling pathways involved in PGC- function, we established a cell line, CH1 PGC-, which stably overexpresses PGC-. Using this cell line, we found that over-expression of PGC- stimulated extra adenosine triphosphate (ATP) and reduced reactive oxygen species (ROS) production. These effects were accompanied by up-regulation of the cell cycle checkpoint regulators CyclinD1 and CyclinB1. We hypothesized that ATP and ROS function as cellular signals to regulate cyclins and control cell cycle progression. Indeed, we found that reduction of ATP levels down-regulated CyclinD1 but not CyclinB1, whereas elevation of ROS levels down-regulated CyclinB1 but not CyclinD1. Furthermore, both low ATP levels and elevated ROS levels inhibited cell growth, but PGC- was maintained at a constant level. Together, these results demonstrate that PGC- regulates cell cycle progression through modulation of CyclinD1 and CyclinB1 by ATP and ROS. These findings suggest that PGC- potentially coordinates energy metabolism together with the cell cycle. Keywords Peroxisome proliferator-activated receptor-γ coactivator (PGC-) Mitochondria Oxidative phosphorylation (OXPHOS) Cell cycle CyclinD1 CyclinB1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700