Shorebird patches as fingerprints of fractal coastline fluctuations due to climate change
详细信息    查看全文
  • 作者:Matteo Convertino (1) (2) (3)
    Adam Bockelie (2) (4) (5)
    Gregory A Kiker (1) (3)
    Rafael Mu?oz-Carpena (1) (3)
    Igor Linkov (6) (7)
  • 关键词:Land cover change ; Coastal wetlands ; Coastline complexity ; Fractal dimension ; Habitat suitability ; Patches ; Sea level rise
  • 刊名:Ecological Processes
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:1
  • 期:1
  • 全文大小:4766KB
  • 参考文献:1. Aiello-Lammens ME, Chu-Agor ML, Convertino M, Fischer RA, Linkov I, Resit Akcakaya H: The impact of sea level rise on snowy plovers in Florida: integrating geomorphological, habitat, and metapopulation models. / Global Change Biol 2011, 17:3644-654. doi:10.1111/j.1365-2486.2011.02497.x CrossRef
    2. Airoldi L: Effects of patch shape in intertidal algal mosaics: roles of area, perimeter and distance from edge. / Mar Biol 2003, 143:639-50. CrossRef
    3. Alliance FS: Florida Panhandle Shorebird Working Group. 2010.
    4. Audubon: / America’s top ten most endangered birds. Tech. rep. National Audubon Society, New york; 2006.
    5. Bak P: / How nature works: the science of self-organized criticality. Springer-Verlag, Berlin; 1999.
    6. Baldassarri A, Sapoval B, Felix S: A numerical retro-action model relates rocky coast erosion to percolation theory. 2012.
    7. Banavar JR, Colaiori F, Flammini A, Maritan A, Rinaldo A: Scaling, optimality and landscape evolution. / J Stat Phys 2001, 104:1-3. CrossRef
    8. Batty M: / Fractal cities. Edited by: Longley, P. Academic Press, San Diego; 1994.
    9. Bonabeau E, Dagorn L, Freon P: Scaling in animal group-size distributions. / Proc Nat Acad Sci 1999, 96:4472-477. doi:10.1073/pnas.96.8.4472 CrossRef
    10. Buldyrev S, Dokholyan N, Erramilli S, Hong M, Kim J, Malescio G, Stanley H: Hierarchy in social organization. / Phys Stat Mech Appl 2003,330(3-):653-59. doi:10.1016/j.physa.2003.09.041 CrossRef
    11. Burney C: Florida beach-nesting bird report, 2005-008. 2009.
    12. C-CAP: Coastal change analysis program regional land cover. 2009.
    13. Chu-Agor M, Mu?oz-Carpena R, Kiker G, Emanuelsson A, Linkov I: Exploring sea level rise vulnerability of coastal habitats using global sensitivity and uncertainty analysis. / Environ Model Software 2011,26(5):593-04. CrossRef
    14. Clough J: Application of SLAMM 4.1 to nine sites in Florida. 2006.
    15. Clough JS: The Sea Level Affecting Marshes Model. 2010.
    16. Convertino M, Kiker G, Chu-Agor M, Mu?oz-Carpena R, Martinez C, Aiello-Lammens M, Ak?akaya H, Fisher R, Linkov I: / Integrated modeling to mitigate climate change risk due to sea-level rise of imperiled shorebirds on Florida coastal military installations. Springer, Dordrecht; 2010.
    17. Convertino M, Donoghue J, Chu-Agor M, Kiker G, Munoz-Carpena R, Fischer R, Linkov I: Anthropogenic renourishment feedback on shorebirds: a multispecies Bayesian perspective. / Ecol Eng 2011a, 37:1184-194. doi:10.1016/j.ecoleng.2011.02.019 CrossRef
    18. Convertino M, Kiker G, Munoz-Carpena R, Chu-Agor M, Fischer R, Linkov I: Scale- and resolution-invariance of suitable geographic range for shorebird metapopulations. / Ecol Complexity 2011b,8(4):364-76. doi:10.1016/j.ecocom.2011.07.007 CrossRef
    19. Convertino M, Elsner J, Mu?oz-Carpena R, Kiker G, Fisher R, Linkov I: Do tropical cyclones shape shorebird habitat patterns? Biogeoclimatology of Snowy Plovers in Florida. / PLoS ONE 2011c,6(1):p1. CrossRef
    20. Convertino M, Simini F, Catani F, Kiker G: From river basins to elephants to bacteria colonies: aggregate-size spectrum of animate and inanimate species. / PLoS ONE (in press) 2012.
    21. del Barrio G, Harrison P, Berry P, Butt N, Sanjuan M, Pearson R, Dawson T: Integrating multiple modelling approaches to predict the potential impacts of climate change on species-distributions in contrasting regions: comparison and implications for policy. / Environ Sci Policy 2006,9(2):129-47. doi:10.1016/j.envsci.2005.11.005 CrossRef
    22. Ehrlich PR, Levin SA: The evolution of norms. / PLoS Biol 2005,3(6):e194. doi:10.1371/journal.pbio.0030194 CrossRef
    23. Elliott Smith E, Haig S: / Piping plover (charadrius melodus). In: Poole A (ed) The Birds of North America Online. Cornell Lab of Ornithology, Ithaca; 2004. doi:10.2173/bna.2
    24. F-DEP, State Geological Map FDEP-GEO 2001. Tech. rep., Florida Department of Environmental Protection (data from, FGDL, University of Florida GEOPLAN Center).
    25. Fallon F: Petition to list the red knot (caladris canutus rufa) as endangered and request for emergency listing under the endangered species act. 2005.
    26. Folke C, Carpenter S, Walker B, Scheffer M, Elmqvist T, Gunderson L, Holling C: Regime shifts, resilience and biodiversity in ecosystem management. / Annu Rev Ecol Evol Syst 2004, 35:557-81. CrossRef
    27. FWC: Florida beach-nesting birds website. 2010.
    28. Harrington B: / Red knot (calidris canutus). Cornell Lab of Ornithology, Ithaca; 2001. doi:10.2173/bna.563
    29. Helzer C, Jelinski D: Ecol App. 1999, 9:1448-458.
    30. Himes J, Douglass N, Pruner R, Croft A, Seckinger E: Status and Distribution of Snowy Plover in Florida, 2006. 2006.
    31. Humphries N, / et al.: Environmental context explains Lévy and Brownian movement patterns of marine predators. / Nature 2010,465(7301):1066-069. doi:10.1038/nature09116 CrossRef
    32. Imre AR, Bogaert J: The fractal dimension as a measure of the quality of habitats. / Acta Biotheoretica 2004, 52:41-6. CrossRef
    33. Jovani R, Tella J: Fractal bird nest distribution produces scale-free colony sizes. / Proc R Soc B 2007, 274:2465-469. doi:10.1098/rspb.2007.0527 CrossRef
    34. Jovani R, Serrano D, Tella JL, Adler FR, Ursúa E: Truncated power laws reveal a link between low-level behavioral processes and grouping patterns in a colonial bird. / PLoS ONE 2008, 3:1992-+. doi:10.1371/journal.pone.0001992 CrossRef
    35. Kéfi S, Rietkerk M, Alados CL, Pueyo Y, Papanastasis VP, Elaich A, de Ruiter PC: Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. / Nature 2007, 449:213-17. doi:10.1038/nature06111 CrossRef
    36. Kefi S, Rietkerk M, Roy M, Franc A, de Ruiter P, Pascual M: Robust scaling in ecosystems and the meltdown of patch size distributions before extinction. / Ecol Lett 2011,14(1):29-5. doi:10.1111/j.1461-0248.2010.01553.x CrossRef
    37. Kindvall O, Petersson A: onsequences of modelling interpatch migration as a function of patch geometry when predicting metapopulation extinction risk. / Ecol Modell 2000,129(1):101-09. CrossRef
    38. Klemas V, Dobson J, Ferguson R, Haddad K: A coastal land cover classification system for the noaa coastwatch change analysis project. / J Coastal Res 1993,9(3):862-72.
    39. Korcak J: Deux types fondamentaux de distribution staffstique. / Bull Inst Int Star 1940, 30:295-07.
    40. Lamonte K, Douglass N: Status and Distribution of Snowy Plover in Florida, 2002. 2002.
    41. Leyrer J, Spaans B, Camara M, Piersma T: Small home ranges and high site fidelity in red knots (calidris c. canutus) wintering on the banc dArguin, mauritania. / J Ornithology 2006,147(2):376-84. doi:10.1007/s10336-005-0030-8 CrossRef
    42. Majka D, Jenness J, Beier P: Corridordesigner: Arcgis tools for designing and evaluating corridors. / CorridorDesigner 2007. http://corridordesign.org
    43. Mandelbrot B: How long is the coast of britain? Statistical self-similarity and fractional dimension. / Science 1967.,156(3775): doi:10.1126/science.156.3775.636
    44. Mandelbrot B: / The Fractal Geometry of Nature. W.H. Freeman, New York; 1982.
    45. Masetti R, Fagherazzi S, Montanari A: Application of a barrier island translation model to the millennial-scale evolution of Sand Key, Florida. / Continental Shelf Res 2008, 28:1116-126. doi:10.1016/j.csr.2008.02.021 CrossRef
    46. Morais PA, Oliveira EA, Araújo NAM, Herrmann HJ, Andrade JS: Fractality of eroded coastlines of correlated landscapes. / Phys Rev E 2011, 84:016,102. doi:10.1103/PhysRevE.84.016102
    47. Muller S, Mu?oz-Carpena R, Kiker G: / Model relevance: frameworks for, exploring the complexity-sensitivity-uncertainty trilemma. NATO book, Amsterdam; 2010.
    48. National Research Council, NAS (ed): / A New Biology for the 21st Century. The National Academies Press, Washington, DC; 2009.
    49. Nieves V, Wang J, Bras R, Wood E: Maximum entropy distributions of scale-invariant processes. / Phys Rev Lett 2010,105(11):118,701+. doi:10.1103/PhysRevLett.105.118701 CrossRef
    50. Nikora V, Pearson C, Shankar U: Scaling properties in landscape patterns: New Zealand Experience. / Landscape Ecol 1999, 14:17-3. CrossRef
    51. Page G, Stenzel L, Warriner J, Paton P: Snowy plover (charadrius alexandrinus). 2009. In: Cornell I Lab of Ornithology, Poole A (eds) The Birds of North America Online, vol. 5. , http://bna.birds.cornell.edu/bna/species/154 doi:10.2173/bna.154, http://bna.birds.cornell.edu/bna/species/154
    52. Paola C, Leeder M: Environmental dynamics: Simplicity versus complexity. / Nature 2011, 469:38-9. doi:10.1038/469038a CrossRef
    53. Pascual M, Manojit R, Guichard F, Flierl G: Cluster-size distributions: signatures of self-organization in spatial ecologies. / Phil Trans R Soc Lond B 2002, 357:657-66. doi:10.1098/rstb.2001.0983 CrossRef
    54. Pascual M, Roy M, Laneri K: Simple models for complex systems: exploiting the relationship between local and global densities. / Theor Ecol 2011,4(2):211-22. CrossRef
    55. Paton P, Edwards T: Factors affecting interannual movements of snowy plovers. / The Auk 1996,113(3):534-43. doi:10.2307/4088973 CrossRef
    56. Phillips S, Anderson R, Schapire R: Maximum entropy modeling of species geographic distributions. / Ecol Modell 2006,190(3-):231-59. doi:10.1016/j.ecolmodel.2005.03.026 CrossRef
    57. Phillips SJ, Miroslav D: Modeling of species distributions with maxent: new extensions and a comprehensive evaluation. / Ecography 2008,31(2):161-75. CrossRef
    58. Pruner R: Assessing habitat selection, reproductive performance, and the affects of anthropogenic disturbance of the Snowy Plover along the Florida Gulf coast. 2010.
    59. Reinhardt L, Jerolmack D, Cardinale BJ, Vanacker V, Wright J: Dynamic interactions of life and its landscape: feedbacks at the interface of geomorphology and ecology. / Earth Surf Processes Landforms 2010, 35:78-01. doi:10.1002/esp.1912 CrossRef
    60. Rinaldo A, Dietrich WE, Rigon R, Vogel GK, Rodrlguez-Lturbe I: Geomorphological signatures of varying climate. / Nature 1995, 374:632-35. doi:10.1038/374632a0 CrossRef
    61. Ritchie M: Scale-dependent foraging and patch choice in fractal environments. / Evolutionary Ecol 1998, 12:309-30. CrossRef
    62. Scanlon TM, Caylor KK, Levin SA, Rodriguez-Iturbe I: Positive feedbacks promote power-law clustering of Kalahari vegetation. / Nature 2007, 449:209-12. doi:10.1038/nature06060 CrossRef
    63. Schneider D, Tella J, Scaling theory: application to marine ornithology: / Ecosystems. 2002, 5:736-48. doi:10.1007/s10021-002-0156-y CrossRef
    64. Schwimmer RA: A temporal geometric analysis of eroding marsh shorelines: can fractal dimensions be related to processes. / J Coastal Res 2008, 1:152-58. CrossRef
    65. Seavey JR, Gilmer B, McGarigal KM: Effect of sea level rise on piping plover (charadrius melodus) breeding habitat. / Biol Conserv 2010. doi:10.1016/j.biocon.2010.09.017
    66. Solé R: / Self-organization in Complex Ecosystems. Edited by: Bascompte, J. Princeton University Press, Princeton, NJ; 2006.
    67. Stenzel L, Warriner J, Warriner J, Wilson K, Bidstrup F, Page G: Long-distance breeding dispersal of Snowy Plovers in western North America. / J Animal Ecol 1994, 63:887-02. CrossRef
    68. Stenzel L, Page G, Warriner J, Warriner J, George D, Eyster C, Ramer B, Neuman K: Survival and natal dispersal of juvenile snowy plovers ( Charadrius alexandrinus ) in central coastal California. / The Auk 2007,124(3):1023-036. CrossRef
    69. USFWS: Piping Plover (Charadrius melodus) 5-Year Review: Summary and Evaluation. 2009.
    70. USGS: National Elevation Dataset. 2010.
    71. USGS-FWS: Data from the 2006, International Piping Plover Census (IPIPLC),. 2009.
    72. Warriner JS, Warriner JC, Page GW, Stenzel LE: Mating system and reproductive success of a small population of polygamous Snowy Plovers. / Wilson Bull 1986, 98:15-7.
  • 作者单位:Matteo Convertino (1) (2) (3)
    Adam Bockelie (2) (4) (5)
    Gregory A Kiker (1) (3)
    Rafael Mu?oz-Carpena (1) (3)
    Igor Linkov (6) (7)

    1. Department of Agricultural and Biological Engineering-IFAS, University of Florida, Gainesville, FL, USA
    2. Contractor at the Risk and Decision Science Team, Environmental Laboratory, Engineer Research and Development Center, US Army Corps of Engineers, Concord, MA, USA
    3. Florida Climate Institute, UF-FSU, c/o Frazier Rogers Hall, Gainesville, FL, USA
    4. Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
    5. Department of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA, USA
    6. Risk and Decision Science Team, Environmental Laboratory, Engineer Research and Development Center, US Army Corps of Engineers, Concord, MA, USA
    7. Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA, USA
  • ISSN:2192-1709
文摘
Introduction The Florida coast is one of the most species-rich ecosystems in the world. This paper focuses on the sensitivity of the habitat of threatened and endangered shorebirds to sea level rise induced by climate change, and on the relationship of the habitat with the coastline evolution. We consider the resident Snowy Plover (Charadrius alexandrinus nivosus), and the migrant Piping Plover (Charadrius melodus) and Red Knot (Calidris canutus) along the Gulf Coast of Mexico in Florida. Methods We analyze and model the coupled dynamics of habitat patches of these imperiled shorebirds and of the shoreline geomorphology dictated by land cover change with consideration of the coastal wetlands. The land cover is modeled from 2006 to 2100 as a function of the A1B sea level rise scenario rescaled to 2 m. Using a maximum-entropy habitat suitability model and a set of macroecological criteria we delineate breeding and wintering patches for each year simulated. Results Evidence of coupled ecogeomorphological dynamics was found by considering the fractal dimension of shorebird occurrence patterns and of the coastline. A scaling relationship between the fractal dimensions of the species patches and of the coastline was detected. The predicted power law of the patch size emerged from scale-free habitat patterns and was validated against 9 years of observations. We predict an overall 16% loss of the coastal landforms from inundation. Despite the changes in the coastline that cause habitat loss, fragmentation, and variations of patch connectivity, shorebirds self-organize by preserving a power-law distribution of the patch size in time. Yet, the probability of finding large patches is predicted to be smaller in 2100 than in 2006. The Piping Plover showed the highest fluctuation in the patch fractal dimension; thus, it is the species at greatest risk of decline. Conclusions We propose a parsimonious modeling framework to capture macroscale ecogeomorphological patterns of coastal ecosystems. Our results suggest the potential use of the fractal dimension of a coastline as a fingerprint of climatic change effects on shoreline-dependent species. Thus, the fractal dimension is a potential metric to aid decision-makers in conservation interventions of species subjected to sea level rise or other anthropic stressors that affect their coastline habitat.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700