The Agan epithermal gold-silver deposit and prospects for the discovery of high-sulfidation mineralization in northeast Russia
详细信息    查看全文
  • 作者:A. V. Volkov ; N. E. Savva ; A. A. Sidorov ; E. E. Kolova…
  • 刊名:Geology of Ore Deposits
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:57
  • 期:1
  • 页码:21-41
  • 全文大小:6,087 KB
  • 参考文献:1. Akinin, VV, Miller, EL (2011) Evolution of calc-alkaline magmas of the Okhotsk-Chukotka Volcanic Belt. Petrology 19: pp. 237-277 CrossRef
    2. Arribas, A Characteristics of high-sulfidation epithermal deposits, and their relation to magmatic fluid in magmas, fluids, and ore deposits. In: Thompson, JFH eds. (1995) Mineral. Ass. Can., Short Course Ser.. pp. 419-454
    3. Bodnar, RJ, Vityk, MO Interpretation of microthermometric data for H2O-NaCl fluid inclusions. In: Vivo, B, Frezzotti, ML eds. (1994) Fluid Inclusions in Minerals: Methods and Application. Pontignano, Siena, pp. 117-130
    4. Bortnikov, NS, Khanchuk, AI, Krylova, TL (2005) Geochemistry of the mineral-forming fluids in some tinbearing hydrothermal systems of Sikhote Alin, the Russian Far East. Geol. Ore Dep. 47: pp. 488-516
    5. Bortnikov, NS, Gamyanin, GN, Vikent’eva, OV (2007) Fluid composition and origin in the hydrothermal system of the Nezhdaninsky Gold Deposit, Sakha (Yakutia), Russia. Geol. Ore Dep. 49: pp. 87-128 CrossRef
    6. Catchpole, H, Kouzmanov, K, Fontbote, L (2012) Copperexcess stannoidite and tennantite-tetrahedrite as proxies for hydrothermal fluid evolution in a zoned Cordillerantype base-metal district, Morococha, Central Peru. Can. Mineral. 50: pp. 719-743 CrossRef
    7. Corbett, G (2009) Anatomy of porphyry-related Au-Cu-Ag-Mo mineralised systems: some exploration implications. Australian Institute of Geoscientists North Queensland Exploration Conference. AIG Bull. 49: pp. 36-46
    8. Corbett, G.J. and Leach, T.M., Southwest Pacific rim goldcopper systems: structure, alteration and mineralization, / Econ. Geol. Bull. Soc. Econ. Geol., 1998, vol. 6.
    9. Eremin, RA (1974) Gidrotermal’nyi metamorfizm i orudenenie Armanskoi vulkanostruktury. Nauka, Novosibirsk
    10. Fenner, CN (1913) Stability relations of the silica minerals. Am. J. Sci. 36: pp. 331-338 CrossRef
    11. Fogel’man, NA, Konstantinov, MI, Kurbanov, NK (1995) Principles of systematics of gold deposits for prediction and exploration. Otechestvennaya Geol.. pp. 1-41
    12. Goncharov, VI, Vashchilov, YuYa, Sidorov, AA (2005) Deep structure of the large noble metal deposits of Northeast Asia. Krupnye i superkrupnye mestorozhdeniya: zakonomernosti razmeshcheniya i usloviya obrazovaniya. Inst. Geol. Rudn. Mestorozhd. Ross. Akad. Nauk, Moscow, pp. 69-95
    13. Goryachev, NA, Gamyanin, GN, Gel’man, ML (2011) Prospects of finds of high-sulfidation type deposits in the volcanic belts of Northeast Russia. Tezisy dokladov II gorno-geologicheskogo foruma “Zoloto severnogo obramleniya Patsifika- pp. 88-90
    14. Hedenquist, JW, Browne, PR, Allis, RG (1988) Epithermal Gold Mineralization.
    15. Hedenquist, JW, Arribas, A, Reynolds, TJ (1998) Evolution of an intrusion-centered hydrothermal system: Far Southeast-Lepanto porphyry-epithermal Cu-Au-deposits, Philippines. Econ. Geol. 93: pp. 373-404 CrossRef
    16. Hedenquist, JW, Arribas, A, Gonzalez-Urien, E (2000) Exploration for epithermal gold deposits. Gold in 2000, SEG Shortcourse. pp. 245-277
    17. Iler, RK (1979) The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry. Wiley, Chichester
    18. Jannas, RR, Bowers, TS, Petersen, U (1999) High-sulfidation deposit types in the El Indio District, Chile. Geology and Ore Deposits of the Andes, Econ. Geol. Sp. Publ. 7: pp. 219-266
    19. Konstantinov, M.M., Vargunina, N.P., Kosovets, T.N., et al., / Zoloto-serebryanye mestorozhdeniya (Gold-Silver Deposits), Krivtsov A.I., Ed. Moscow: Tsentr. Nauchno-Issled. Inst. Geol. Razved., 2000.
    20. Kotlyar, IN, Zhulanova, IL, Rusakova, TB (2001) Izotopnye sistemy magmaticheskikh i metamorficheskikh kompleksov Severo-Vostoka Rossii. Severovost. Kompl. Nauchno-Issled. Inst. Ross. Akad. Nauk, Magadan
    21. Bas, MJ, Maitre, RW, Streckeisen, A (1986) Chemical classification of volcanic rocks based on the total alkalisilica diagram. J. Petrol. 27: pp. 745-750 CrossRef
    22. Lesage, G, Richards, JP, Muehlenbachs, K (2013) Geochronology, geochemistry, and fluid characterization of the Late Miocene Buritica gold deposit, Antioquia department, Columbia. Econ. Geol. 108: pp. 1067-1097
  • 刊物主题:Mineral Resources;
  • 出版者:Springer US
  • ISSN:1555-6476
文摘
The Arman volcanotectonic depression (VTD) containing the Agan deposit is distinguished as the most promising area for the discovery of high-sulfidation (HS) epithermal Au deposit during prospecting in the Central Okhotsk ore district of the Okhotsk-Chukotka volcanogenic belt (OChVB). Studies reveal that the volcanic rocks of the Agan deposit strongly differ from those of the reference HS-type epithermal deposits. It was found that quartz-alunite metasomatites in the ore field are characterized by low Au content and Sn content two orders of magnitude higher than those of Cu and Mo. The pair-correlation coefficients are K cor (Au-Sn) = 0.73 and K cor(Au-Cu) = 0.22. The ore bodies of the Agan deposit do not contain enargite and luzonite—the main indicator minerals for Au productive HS-type mineralization; porous (“vuggy- quartz is weakly manifested. In terms of the mineral complex, the epithermal mineralization revealed in the metasomatites of the deposit is close to the intermediate sulfidation type. At the same time, this mineralization, in many of its features, is similar to the mineralization developed in siliceous and quartz-alunite lithocaps, which are formed above degassing intrusions. In this setting, HS-type ore-bearing fluids either are not formed in the system or do not reach epithermal depths.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700