An Integrated Seismic Interpretation and Rock Physics Attribute Analysis for Pore Fluid Discrimination
详细信息    查看全文
  • 作者:Perveiz Khalid ; Nisar Ahmed ; Azhar Mahmood…
  • 关键词:Prospect identification ; Attribute analysis ; Potwar ; Seismic interpretation ; Fluid indicator coefficients
  • 刊名:Arabian Journal for Science and Engineering
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:41
  • 期:1
  • 页码:191-200
  • 全文大小:3,799 KB
  • 参考文献:1.Ahmed N., Ali S.H., Khalid P.: Subsurface structural mapping of eastern Potwar, Pakistan: an application of seismic reflection. Geol. Bull. Punj. Univ. 47, 1–12 (2012)
    2.Khalid P., Ghazi S.: Discrimination of fizz water and gas reservoir by AVO analysis: a modified approach. Acta Geod. Geophys. 48, 347–361 (2013)CrossRef
    3.Avseth P., Mukerji T., Mavko G.: Quantitative Seismic Interpretation: Applying Rock Physics Tools to Reduce Interpretation Risk. Cambridge University Press, Cambridge (2005)CrossRef
    4.González, E.F.: Physical and quantitative interpretation of seismic attributes for rocks and fluids identification. Ph.D. Thesis, Stanford University (2006)
    5.Khalid, P.; Ahmed, N; Khan, K.A.; Naeem, M.: AVO-derived attributes to differentiate reservoir facies from non-reservoirs facies and fluid discrimination in Penobscot area, Nova Scotia. Geosci. J. (2014) doi:10.​1007/​s12303-014-0048-0
    6.Ahmed, N.; Khalid, P.; Anwar, A.W.; Ghazi, S.: AVO forward modeling and attributes analysis for fluid’s identification: a case study. Acta Geod. Geophys. (2015). doi:10.​1007/​s40328-014-0097-x
    7.Khalid P., Brosta D., Nichita D.V., Blanco J.: A modified rock physics model for analysis of seismic signatures of low gas-saturated rocks. Arab. J. Geosci. 7, 3281–3295 (2014)CrossRef
    8.Ahmed, N.; Khalid, P.; Anwar, A.W.: Rock physics modelling to assess the impact of spatial distribution pattern of pore fluid and clay contents on acoustic signatures of partially-saturated reservoirs. Acta Geod. Geophys. (2015). doi:10.​1007/​s40328-015-0101-0
    9.Gassmann, F.: Uber die Elastizitatporoser Medien. Vierteljahrsschr. Natforsch. Ges. Zür. 96, 1–23 (1951)
    10.Batzle M.L., Wang Z.: Seismic properties of pore fluids. Geophysics 64, 1396–1408 (1992)CrossRef
    11.Berryman J.G.: Tutorial: origin of Gassmann’s equation. Geophysics 64, 1627–1629 (1999)CrossRef
    12.Wang Z.: Fundamental of seismic rock physics. Geophysics 66, 398–412 (2001)CrossRef
    13.Smith T.M., Sondergeld C.H., Rai C.S.: Gassmann fluid substitution: a tutorial. Geophysics 68, 430–440 (2003)CrossRef
    14.Russell B.H., Hedlin K., Hilterman F.J., Lines L.R.: Fluid-property discrimination with AVO: a Biot–Gassmann perspective. Geophysics 68, 29–39 (2003)CrossRef
    15.Han D., Batzle M.L.: Gassmann’s equation and fluid-saturation effects on seismic velocities. Geophysics 69, 398–405 (2004)CrossRef
    16.Smith G.C., Gidlow P.M.: Weighted stacking for rock property estimation and detection of gas. Geophys. Prospect. 35, 993–1014 (1987)CrossRef
    17.Verm R., Hilterman F.: Lithology color-coded seismic sections: the calibration of AVO crossplotting to rock properties. Lead. Edge 14, 847–853 (1995)CrossRef
    18.Goodway, W.; Chen, T.; Downton, J.: Improved AVO fluid detection and lithology discrimination using Lamé parameters: λρ, μρ and λ/μ fluid stack from P and S inversions. In: 67thAnnual International Meeting, Society of Exploration Geophysics, Expanded Abstracts, pp. 148–151 (1997)
    19.Castagna J.P., Swan H.S., Foster D.J.: Framework for the interpretation of AVO intercept and gradient. Geophysics 63, 948–956 (1998)CrossRef
    20.Chen, T.; Goodway, B.; Zhang, W.; Potocki, D.; Calow, B.; and Gray, D.: Integrating geophysics, geology and petrophysics: A 3D seismic AVO and borehole/logging case study. In: 68th Annual International Meeting, Society of Exploration Geophysics, Expanded Abstracts, pp. 615–618 (1998)
    21.Connolly P.: Elastic impedance. Lead. Edge 18, 438–452 (1999)CrossRef
    22.Hedlin, K.: Pore space modulus and extraction using AVO. In: 70th Annual International Meeting, Society of Exploration Geophysics, Expanded Abstracts, pp. 170–173 (2000)
    23.Berryman J.G., Berge P.A., Bonner B.P.: Estimating rock porosity and fluid saturation using only seismic velocities. Geophysics 67, 391–404 (2002)CrossRef
    24.Quakenbush M., Shang B., Tuttle C.: Poisson impedance. Lead. Edge 25, 128–138 (2006)CrossRef
    25.Pengyuan, S.; Xiuli, L.; Yanpeng, L.; Yuanyuan, Y.; Haifeng, C.: Elastic parameter AVO approximation and their applications. In: Annual International Meeting, Society of Exploration Geophysics, Expanded Abstract, pp. 523–527 (2008)
    26.Ghazi S., Aziz T., Khalid P., Sahraeyan M.: Petroleum Play analysis of the Jurassic sequence, Meyal Oil-field, Potwar Basin, Pakistan. J. Geol. Soc. India 84, 727–738 (2015)CrossRef
    27.Khalid, P.; Yasin, Q.; Sohail, G.M.D.; Kashif J.M.: Integrating core and wireline log data to evaluate porosity of Jurassic formations of Injra-1 and Nuryal-2 wells, Western Potwar, Pakistan. J. Geol. Soc. India (2015, accepted)
    28.Khalid, P.: Effects on seismic properties of thermoelastic relaxation and liquid/vapor phase transition. Ph.D. Thesis, University of Pau (2011)
    29.Kazmi A., Jan M.: Geology and Tectonics of Pakistan. Karachi Graphic Publishers, Karachi (1997)
    30.Siddiqui, S.U.; Elahi, N.;Siddiqui, A.J.: A case history: case histories of eight oil and gas fields in Pakistan. Published in proceedings of Pakistan petroleum convention (1998)
    31.Voigt W.: Lehrbuch der Kristallphysik. Leipzig, Teubner (1910)
    32.Reuss A.: Berechnung der fliessgrense von mischkristallen auf grund der plastizitatbedingung fur einkristalle. Z. Ange-wandte Math. Mech. 9, 49–58 (1929)CrossRef MATH
    33.Hill R.: The elastic behavior of a crystalline aggregate. Proc. Phys. Soc. Lond. Ser. A 65, 349–354 (1952)CrossRef
    34.Mavko G., Mukerji T., Dvorkin J.: The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media, 2nd edn. Cambridge University Press, Cambridge (2009)CrossRef
    35.Murphy W., Reischer A., Hsu K.: Modulus decomposition of compressional and shear velocities in sand bodies. Geophysics 58, 227–239 (1993)CrossRef
    36.Wood A.B.: A Textbook of Sound. G. Bell and sons, London (1941)
    37.Dillon L., Schwedersky G., Vasquez G., Velloso R., Nunes C.: A multi-scale DHI elastic attributes evaluation. Lead. Edge 22, 1024–1029 (2003)CrossRef
    38.Hamada G.M.: Reservoir fluids identification using VP/VS ratio. Oil Gas Sci. Technol. 59, 649–654 (2004)CrossRef
  • 作者单位:Perveiz Khalid (1)
    Nisar Ahmed (1)
    Azhar Mahmood (1)
    Muhammad Ammar Saleem (1)
    Hassan (1)

    1. Institute of Geology, University of the Punjab, Lahore, 54590, Pakistan
  • 刊物类别:Engineering
  • 刊物主题:Engineering, general
    Mathematics
    Science, general
  • 出版者:Springer Berlin / Heidelberg
文摘
Accurate prediction of subsurface structures, lithologies and pore fluids, is of great interest for petroleum prospecting and reservoir characterization. Seismic reflection data are widely used to mark subsurface structures and lithologies. However, only seismic data are not sufficient to mark fluid heterogeneities present into the pores. Therefore, the use of integrated approach is vital to map subsurface heterogeneities with more accuracy. Based on seismic interpretation, the limestone of Chorgali Formation present in Ratana area of Northern Potwar, Pakistan is interpreted as reservoir rock. Structural interpretation revealed that the study area lies in compressional regime and structures formed are thrust and popups. The reservoir properties such as lithology, porosity, permeability, depositional environments, shale volume, fluid saturation, net pay thickness are determined from petrophysical analysis which confirms that reservoir characteristics of Chorgali limestone are enough to permit hydrocarbon production. Fluid substitution modeling is used to estimate different rock physics attributes such as compressibility, Lame’s parameters and their product with density, P to S-wave velocity ratio, impedances and Poisson’s ratio are computed as a function of pore fluid type (oil, gas, brine etc.). Sensitivity analysis is performed to derive fluid indicator coefficient which indicates the most appropriate and sensitive rock physics attribute that can be crossplotted to discriminate the rock saturated with different pore fluids (gas/brine/oil).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700