Rigorous high-precision computation of the Hurwitz zeta function and its derivatives
详细信息    查看全文
  • 作者:Fredrik Johansson
  • 关键词:Hurwitz zeta function ; Riemann zeta function ; Arbitrary ; precision arithmetic ; Rigorous numerical evaluation ; Fast polynomial arithmetic ; Power series ; 65D20 ; 68W30 ; 33F05 ; 11 ; 04 ; 11M06 ; 11M35
  • 刊名:Numerical Algorithms
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:69
  • 期:2
  • 页码:253-270
  • 全文大小:1,126 KB
  • 参考文献:1.Adell, J.A.: Estimates of generalized Stieltjes constants with a quasi-geometric rate of decay. Proc. R. Soc. A 468, 1356-370 (2012)View Article MathSciNet
    2.Bailey, D.H., Borwein, J.M. In: B. Engquist, W. Schmid, P. W. Michor (eds.) : Experimental mathematics: recent developments and future outlook, pp 51-6. Springer (2000)
    3.Bernstein, D.J.: Fast multiplication and its applications. Algorithmic Number Theory 44, 325-84 (2008)
    4.Bloemen, R.: Even faster ζ(2n) calculation! (2009). http://?remcobloemen.?nl/-009/-1/?even-faster-zeta-calculation.?html http://?remcobloemen.?nl/-009/-1/?even-faster-zeta-calculation.?html
    5.Bogolubsky, A.I., Skorokhodov, S.L.: Fast evaluation of the hypergeometric function p F p?(a;b;z) at the singular point z=1 by means of the Hurwitz zeta function ζ(α,s). Program. Comput. Softw. 32(3), 145-53 (2006)View Article MATH
    6.Bohman, J., Fr?berg C-E.: The Stieltjes function -definition and properties. Math. Comput. 51(183), 281-89 (1988)MATH
    7.Borwein, J.M., Bradley, D.M., Crandall, R.E.: Computational strategies for the Riemann zeta function. J. Comput. Appl. Math. 121, 247-96 (2000)View Article MATH MathSciNet
    8.Borwein, P.: An efficient algorithm for the Riemann zeta function. Canadian Mathematical Society Conference Proceedings 27, 29-4 (2000)
    9.Brent, R.P., Kung, H.T.: Fast algorithms for manipulating formal power series. J. ACM 25(4), 581-95 (1978)View Article MATH MathSciNet
    10.Coffey, M.W.: An efficient algorithm for the Hurwitz zeta and related functions. J. Comput. Appl. Math. 225(2), 338-46 (2009)View Article MATH MathSciNet
    11.Arias de Reyna, J.: Asymptotics of Keiper-Li coefficients. Functiones et Approximatio Commentarii Mathematici 45(1), 7-1 (2011)View Article MATH MathSciNet
    12.The GMP development team: GMP: The GNU multiple precision arithmetic library. http://?www.?gmplib.?org
    13.The MPIR development team: MPIR: Multiple Precision Integers and Rationals. http://?www.?mpir.?org
    14.Edwards H.M.: Riemann’s zeta function. Academic Press (1974)
    15.Finck, T., Heinig, G., Rost, K.: An inversion formula and fast algorithms for Cauchy-Vandermonde matrices. Linear Algebra Appl. 183, 179-91 (1993)View Article MATH MathSciNet
    16.Flajolet, P., Vardi, I.: Zeta function expansions of classical constants. Unpublished manuscript (1996). http://?algo.?inria.?fr/?flajolet/?Publications/?landau.?ps
    17.Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: A Multiple-Precision Binary Floating-Point Library with Correct Rounding. ACM Trans. Math. Softw.-33(2), 13:1-3:15 (June 2007) http://?mpfr.?org
    18.Gould, H.: Series transformations for finding recurrences for sequences. Fibonacci Quarterly 28, 166-71 (1990)MATH MathSciNet
    19.Haible, B., Papanikolaou, T.: Algorithmic Number Theory: Third International Symposium. In: Buhler, J. P. (ed.) Fast multiprecision evaluation of series of rational numbers, Vol. 1423, pp 338-50. Springer (1998)
    20.Hart, W.B.: Fast Library for Number Theory: An Introduction, In: Proceedings of the Third international congress conference on Mathematical software, ICMS-0, pp 88-1. Springer-Verlag, Berlin, Heidelberg (2010). http://?flintlib.?org
    21.Harvey, D., Brent, R.P.: Fast computation of Bernoulli, Tangent and Secant numbers. Springer Proceedings in Mathematics & Statistics 50, 127-42 (2013) http://?arxiv.?org/?abs/-108.-286 MathSciNet
    22.Hiary, G.: Fast methods to compute the Riemann zeta function. Ann. math. 174, 891-46 (2011)View Article MATH MathSciNet
    23.Wofram Research Inc: Some Notes on Internal Implementation (section of the online documentation for Mathematica 9.0) (2013). http://?reference.?wolfram.?com/?mathematica/?tutorial/?SomeNotesOnInter?nalImplementatio?n.?html
    24.Johansson, F.: Arb: a C library for ball arithmetic. ACM Communications in Computer Algebra 47, 166-69 (2013). DecemberView Article MATH
    25.Keiper, J.B.: Power series expansions of Riemann’s ξ function. Math. Comput. 58 (198), 765-73 (1992)MATH MathSciNet
    26.Knessl, C., Coffey, M.: An asymptotic form for the Stieltjes constants γ k (a) and for a sum S γ (n) appearing under the Li criterion. Math. Comput. 80(276), 2197-217 (2011)View Article MATH MathSciNet
    27.Knessl, C., Coffey, M.: An effective asymptotic formula for the Stieltjes constants. Math. Comput. 80(273), 379-86 (2011)View Article MATH MathSciNet
    28.Kreminski, R.: Newton-Cotes integration for approximating Stieltjes (generalized Euler) constants. Math. Comput. 72(243), 1379-397 (2003)View Article MATH MathSciNet
    29.Li, X.-J.: The positivity of a sequence of numbers and the Riemann Hypothesis. Math. Comput. 65(2), 325-33 (1997)MATH
    30.Matiyasevich, Y.: An artless method for calculating approximate values of zeros of Riemann’s zeta function (2012). http://?logic.?pdmi.?ras.?ru/?~yumat/?personaljournal/?artlessmethod/-/span>
    31.Matiyasevich, Y., Beliakov, G.: Z
  • 作者单位:Fredrik Johansson (1)

    1. RISC, Johannes Kepler University, 4040, Linz, Austria
  • 刊物类别:Computer Science
  • 刊物主题:Numeric Computing
    Algorithms
    Mathematics
    Algebra
    Theory of Computation
  • 出版者:Springer U.S.
  • ISSN:1572-9265
文摘
We study the use of the Euler-Maclaurin formula to numerically evaluate the Hurwitz zeta function ζ(s, a) for \(s, a \in \mathbb {C}\), along with an arbitrary number of derivatives with respect to s, to arbitrary precision with rigorous error bounds. Techniques that lead to a fast implementation are discussed. We present new record computations of Stieltjes constants, Keiper-Li coefficients and the first nontrivial zero of the Riemann zeta function, obtained using an open source implementation of the algorithms described in this paper.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700