Novel anti-Alzheimer’s dimer bis(7)-Cognitin: Cellular and molecular mechanisms of neuroprotection through multiple targets
详细信息    查看全文
  • 作者:Wenming Li (1)
    Marvin Mak (1)
    Hualiang Jiang (2)
    Qinwen Wang (3)
    Yuanping Pang (4)
    Kaixian Chen (2)
    Yifan Han (1)
  • 关键词:Bis(7) ; Cognitin ; multiple targets ; neuroprotection ; AChE ; NMDA receptor
  • 刊名:Neurotherapeutics
  • 出版年:2009
  • 出版时间:January 2009
  • 年:2009
  • 卷:6
  • 期:1
  • 页码:187-201
  • 全文大小:2530KB
  • 参考文献:1. Heppner FL, Gandy S, McLaurin J. Current concepts and future prospects for Alzheimer disease vaccines. Alzheimer Dis Assoc Disord 2004;18:38-3. CrossRef
    2. Marx J. New “Alzheimer’s mouse-produced. Science (Washington D.C.) 1996;273:50-3.
    3. Kamer AR, Dasanayake AP, Craig RG, Glodzik-Sobanska L, Bry M, de Leon MJ. Alzheimer’s disease and peripheral infections: the possible contribution from periodontal infections, model and hypothesis. J Alzheimers Dis 2008;13:437-49.
    4. Van Marum RJ. Current and future therapy in Alzheimer’s disease. Fundam Clin Pharmacol 2008;22(3): 265-74. CrossRef
    5. Kihara T, Shimohama S. Alzheimer’s disease and acetylcholine receptors. Acta Neurobiol Exp 2004;64: 99-05.
    6. Francotte P, Graindorge E, Boveric S, de Tullio P, Pirotte B. New trends in the design of drugs against Alzheimer’s disease. Curr Med Chem 2004;11:1757-778.
    7. Liu JS, Zhu YL, Yu CM, Han YY, Yu FW. The structure of huperzine A and B, two new alkaloids exibiting marked anticholinesterase activity. Can J Chem 1986;64:837-39. CrossRef
    8. Tang XC, Han YF, Chen XP, Zhu XD. Effects of huperzine A on learning and retrieval process of discrimination performance in rats. Acta Pharmacol Sin 1986;7:501-11.
    9. Tang XC, Xiong ZQ, Qian BC, Zhou ZF, Zhang CC. Cognitive improvement by oral huperzine A: a novel acetylcholinesterase inhibitor. In “Alzheimer Therapy: Therapeutic Strategies-(Eds: Giacobini E and Becker R), Birkh?user, Boston, 1994:113-19.
    10. Han YF, Tang XC. Preclinical and clinical progress with huperzine A: a novel acetylcholinesterase inhibitor. In “Alzheimer Therapy: Therapeutic Strategies-(Eds: Giacobini E and Becker R), Birkh?user, Boston, 1996:245-50.
    11. Tang XC, Han YF. Pharmacological profile of huperzine A, a novel acetylcholinesterase inhibitor from Chinese herb. CNS Drug Reviews 1999;5(3):281-00. CrossRef
    12. Xu SS, Gao ZZ, Weng Z, Du ZM, Xu W. Efficacy of tablet huperzine-A on memory, cognition, and behavior in Alzheimer’s disease. Acta Pharmacologica Sinica 1995;16:391-95.
    13. Xu SS, Gao ZZ, Weng Z, Du ZM, Xu W. Efficacy of tablet huperzine-A on memory, cognition, and behavior in Alzheimer’s disease. Acta Pharmacologica Sinica 1999;20:489-90.
    14. Sonkusare SK, Kaul CL, Ramarao P. Dementia of Alzheimer’s disease and other neurodegenerative disorders—memantine, a new hope. Pharmacol Res 2005;51:1-7.
    15. Van Marum RJ. Current and future therapy in Alzheimer’s disease. Fundam Clin Pharmacol 2008;22(3): 265-74. CrossRef
    16. Youdim MB, Buccafusco JJ. CNS Targets for multi-functional drugs in the treatment of Alzheimer’s and Parkinson’s diseases. J Neural Transm 2005;112:519-37. CrossRef
    17. Zhang HY. One-compound-multiple-targets strategy to combat Alzheimer’s disease. FEBS Lett 2005;579: 5260-264. CrossRef
    18. Frantz S. Drug discovery: playing dirty. Nature 2005;437:942-43. CrossRef
    19. Van der Schyf CJ, Mandel S, Geldenhuys WJ, et al. Novel multifunctional anti-Alzheimer drugs with various CNS neurotransmitter targets and neuroprotective moieties. Curr Alzheimer Res 2007;4(5):522-36. CrossRef
    20. Voisin T, Reynish E, Portet F, Feldman H, Vellas B. What are the treatment options for patients with severe Alzheimer’s disease? CNS Drugs 2004;18:575-83. CrossRef
    21. Carlier PR, Du DM, Han YF, Liu J, Pang YP. Potent, easily aynthesized Huperzine A-tacrine hybrid acetylcholinesterase inhibitors. Bioorg Med Chem Lett 1999;9:2335-338. CrossRef
    22. Li WM, Xue J, Niu C, et al. Synergistic neuroprotection by bis(7)-tacrine via concurrent blockade of N-methyl-D-aspartate receptors and neuronal nitric-oxide synthase. Mol Pharmacol 2007;71:1258-267. CrossRef
    23. Sussman JL, Harel M, Frolow F, et al. Atomic structure of acetylcholinesterase from Torpedo califomica: a prototypic acetylcholine-binding protein. Science 1991;253:872-79. CrossRef
    24. Amitai G, Taylor P. Cholinesterases: structure, function, mechanism, genetics and cell biology. In: American Chemical Society, Washington, DC. 1991, 285.
    25. Weise C, Kreienkamp HJ, Raba R, Pedak A, Aaviksaar A, Hucho F. Anionic subsites of the acetylcholinesterase from Torpedo califomica: affinity labelling with the cationic reagent N, N-dimethyl-2-phenyl-aziridinium. EMBO J 1990;9:3885-888.
    26. Taylor P, Lappi S. Interaction of fluorescence probes with acetylcholinesterase: the site and specificity of propidium binding. Biochem 1975;14:1989-997. CrossRef
    27. Rosenberry TL, Neumann E. Interaction of ligands with AChE. Use of temperature-jump relaxation kinetics in the binding of specific fluorescent ligands. Biochemistry 1977;16:3870-878. CrossRef
    28. Pang YP, Quiram P, Jelacic T, Hong F, Brimijoin S. Highly potent, selective, and low cost bis-tetrahydroaminacrine inhibitors of acetylcholinesterase. J Biol Chem 1996;271:23646-3649. CrossRef
    29. Ellman GL, Courtney KD, Andre V Jr, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961;7:88-5. CrossRef
    30. Yu H, Li WM, Kan KK, et al. The physicochemical properties and the in vivo AChE inhibition of two potential anti-Alzheimer agents, bis(12)-hupyridone and bis(7)-tacrine. J Pharm Biomed Anal 2008;46(1):75-1. CrossRef
    31. Wang H, Carlier PR, Ho WL, Lee NTK, Pang YP, Han YF. Attenuation of scopolamine-induced deficits in navigational memory performance in rats by bis(7)-tacrine, a novel dimeric AChE inhibitor. Acta Pharmacol Sinica 1999;20:211-17.
    32. Liu J, Ho WL, Lee NT, Carlier PR, Pang YP, Han YF. Bis(7)-tacrine, a novel acetylcholinesterase inhibitor, reverses AF64A-induced deficits in navigational memory in rats. Neurosci Lett 2000;282: 165-68. CrossRef
    33. Yuan J, Yankner BA. Apoptosis in the nervous system. Nature 2000;407:802-09. CrossRef
    34. Bachis A, Colangelo AM, Vicini S, et al. Interleukin-10 prevents glutamate-mediated cerebellar granule cell death by blocking caspase-3-like activity. J Neurosci 2001;21:3104-112.
    35. Wu DC, Xiao XQ, Ng AK, et al. Protection against ischemic injury in primary cultured mouse astrocytes by bis(7)-tacrine, a novel acetylcholinesterase inhibitor. Neurosci Lett 2000;288:95-8. CrossRef
    36. Xiao XQ, Lee NT, Carlier PR, Pang YP, Han YF. Bis(7)-tacrine, a promising anti-Alzheimer’s agent, reduces hydrogen peroxide-induced injury in rat pheochromocytoma cellsxomparison with tacrine. Neurosci Lett 2000;290:197-00. CrossRef
    37. Li WM, Pi RB, Chan HHN, et al. Novel dimeric acetylcholinesterase inhibitor bis7-tacrine, but not donepezil, prevents glutamate-induced neuronal apoptosis by blocking N-methyl-D-aspartate receptors. J Biol Chem 2005;280: 18179-8188. CrossRef
    38. Fu H, Li W, Lao Y, et al. Bis(7)-tacrine attenuates beta amyloid-induced neuronal apoptosis by regulating L-type calcium channels. J Neurochem 2006;98(5):1400-410. CrossRef
    39. Zhao Y, Li W, Chow PC, et al. Bis(7)-tacrine, a promising anti-Alzheimer’s dimer, affords dose- and time-dependent neuroprotection against transient focal cerebral ischemia. Neurosci Lett 2008;439(2):160-64. CrossRef
    40. Mattson MP. Pathways towards and away from Alzheimer’s disease. Nature 2004;430:631-39. CrossRef
    41. Nicholls DG. Mitochondrial dysfunction and glutamate excitotoxicity studied in primary neuronal cultures. Curr Mol Med 2004;4:149-77. CrossRef
    42. Fu H, Li W, Liu Y, et al. Mitochondrial proteomic analysis and characterization of the intracellular mechanisms of bis(7)-tacrine in protecting against glutamate-induced excitotoxicity in primary cultured neurons. J Proteome Res 2007;6(7):2435-446. CrossRef
    43. Selkoe DJ. Alzheimer’s disease:genes, proteins, and therapy. Physiol Rev 2001;81:741-66.
    44. Dahlgren KN, Manelli AM, Stine WB Jr, et al. Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability. J Biol Chem 2002;277:32046-2053. CrossRef
    45. Kim HJ, Chae SC, Lee DK, et al. Selective neuronal degeneration induced by soluble oligomeric amyloid beta protein. FASEB J 2003;17:118-20.
    46. Demuro A, Mina E, Kayed R, Milton SC, Parker I, Glabe CG. Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem 2005;280: 17294-7300. CrossRef
    47. Davidson RM, Shajenko L, Donta TS. Amyloid beta-peptide (A beta P) potentiates a nimodipine-sensitive L-type barium conductance in N1E-115 neuroblastoma cells. Brain Res 1994;643:324-27. CrossRef
    48. Ueda K, Shinohara S, Yagami T, Asakura K, Kawasaki K. Amyloid beta protein potentiates Ca2+ influx through L-type voltage-sensitive Ca2+ channels:a possible involvement of free radicals. J Neurochem 1997;68:265-71. CrossRef
    49. Fu H, Li W, Luo J, et al. Promising anti-Alzheimer’s dimer bis(7)-tacrine reduces beta-amyloid generation by directly inhibiting BACE-1 activity. Biochem Biophys Res Commun 2008;366(3):631-36. CrossRef
    50. Nalbantoglu J, Tirado-Santiago G, Lahsaini A, et al. Impaired learning and LTP in mice expressing the carboxy terminus of the Alzheimer amyloid precursor protein. Nature 1997;387:500-05. CrossRef
    51. Peng Y, Jiang L, Lee DY, Schachter SC, Ma Z, Lemere CA. Effects of huperzine A on amyloid precursor protein processing and beta-amyloid generation in human embryonic kidney 293 APP Swedish mutant cells. J Neurosci Res 2006;84:903-11. CrossRef
    52. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002;297:353-56. CrossRef
    53. Wang QW, Walsh DM, Rowan MJ, Selkoe DJ, Anwyl R. Block of long-term potentiation by naturally secreted and synthetic amyloid peptide in hippocampal slices is mediated via activation of the kinases c-Jun-terminal kinase, cyclin-dependent kinase5, and p38 mitogen-activated protein kinase as well as metabotropic glutamate receptor type5. J Neurosci 2004;24: 3370-378. CrossRef
    54. Cleary JP, Walsh DM, Hofmeister JJ, et al. Natural oligomers of the amyloid beta protein specifically disrupt cognitive function. Nat Neurosci 2005;8:79-4. CrossRef
    55. Glabe CG, Kayed R. Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis. Neurology 2006;66:S74-8. CrossRef
    56. Malaplate-Armand C, Florent-Bechard S, Youssef I, et al. Soluble oligomers of amyloid-beta peptide induce neuronal apoptosis by activating a cPLA2-dependent sphingomyelinase-ceramide pathway. Neurobiol Dis 2006;23:178-89. CrossRef
  • 作者单位:Wenming Li (1)
    Marvin Mak (1)
    Hualiang Jiang (2)
    Qinwen Wang (3)
    Yuanping Pang (4)
    Kaixian Chen (2)
    Yifan Han (1)

    1. Department of Applied Biology & Chemical Technology, Institute of Modern Chinese Medicine, the Hong Kong Polytechnic University, Hong Kong SAR, China
    2. Center for Drug Discovery and Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Media, 201203, Shanghai, China
    3. Department of Physiology, Medical School, Ningbo University, 315211, Ningbo, China
    4. Mayo Foundation for Medical Education and Research, 55905, Rochester, MN
文摘

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700