Molecular genetic features of human mesenchymal stem cells after their osteogenic differentiation under the conditions of microgravity
详细信息    查看全文
  • 作者:P. M. Gershovich (1)
    Yu. G. Gershovich (1)
    L. B. Buravkova (1)
  • 关键词:microgravity ; gene expression ; mesenchymal stromal cells ; osteogenic differentiation ; dRPM
  • 刊名:Human Physiology
  • 出版年:2013
  • 出版时间:September 2013
  • 年:2013
  • 卷:39
  • 期:5
  • 页码:540-544
  • 全文大小:133KB
  • 参考文献:1. Patel, M.J., Liu, W., Sykes, M.C., et al., Identification of mechanosensitive genes in osteoblasts by comparative microarray studies using the rotating wall vessel and the random positioning machine, / J. Cell Biochem., 2007, vol. 101, no. 3, p. 587. CrossRef
    2. Capulli, M., Rufo, A., Teti, A., and Rucci, N., Global transcriptome analysis in mouse calvarial osteoblasts highlights sets of genes regulated by modeled microgravity and identifies a 鈥渕echanoresponsive osteoblast gene signature,鈥? / J. Cell Biochem., 2009, vol. 107, no. 2, p. 240. doi: 10.1002/jcb.22120. CrossRef
    3. Hammer, B.E., Kidder, L.S., Williams, P.C., and Xu, W.W., Magnetic levitation of MC3T3 osteoblast cells as a ground-based simulation of microgravity, / Microgravity Sci. Technol., 2009, vol. 21, no. 4, p. 311. CrossRef
    4. Ulbrich, C., Westphal, K., Baatout, S., et al., Effects of basic fibroblast growth factor on endothelial cells under conditions of simulated microgravity, / J. Cell Biochem., 2008, vol. 104, no. 4, p. 1324. doi: 10.1002/jcb.21710. CrossRef
    5. Sheyn, D., Pelled, G., Netanely, D., et al., The effect of simulated microgravity on human mesenchymal stem cells cultured in an osteogenic differentiation system: a bioinformatics study, / Tissue Eng., 2010, vol. 16, no. 11, p. 3403. doi: 10.1089/ten.tea.2009.0834. Epub 2010 Aug 31. CrossRef
    6. Monticone, M., Liu, Y., Pujic, N., and Cancedda, R., Activation of nervous system development genes in bone marrow derived mesenchymal stem cells following spaceflight exposure, / J. Cell Biochem., 2010, vol. 111, no. 2, p. 442. doi: 10.1002/jcb.22765. CrossRef
    7. Prodanov, L., van Loon, J.J., Te Riet, J., et al., Nanostructured substrate conformation can decrease osteoblast-like cell dysfunction in simulated microgravity conditions, / J. Tissue Eng. Regen. Med., 2012, doi:10.1002/term.1600. Sep 3.
    8. Pittenger, M.F., Mackay, A.M., Beck, S.C., et al., Multilineage potential of adult human mesenchymal stem cells, / Science, 1999, vol. 284, no. 5411, p. 143. CrossRef
    9. Prockop, D.J., Marrow stromal cells as stem cells for nonhematopoietic tissues, / Science, 1997, vol. 276, no. 5309, p. 71. CrossRef
    10. Caplan, A.I. and Bruder, S.P., Mesenchymal stem cells: building blocks for molecular medicine in the 21st century, / Trends Mol. Med., 2001, vol. 7, no. 6, p. 259. CrossRef
    11. Caplan, A.I. and Dennis, J.E., Mesenchymal stem cells as trophic mediators, / J. Cell. Biochem., 2006, vol. 98, p. 1076. CrossRef
    12. Silva, MeirellesL., Fontes, A.M., Covas, D.T., and Caplan, A.I., Mechanisms involved in the therapeutic properties of mesenchymal stem cells, / Cytokine Growth Factor Rev., 2009, vol. 20, p. 419. CrossRef
    13. Gazenko, O.G., Grigor鈥檈v, A.I., and Egorov, A.D., Fiziologicheskie effekty deistviya nevesomosti na cheloveka v usloviyakh kosmicheskogo poleta, / Fiziol. Chel., 1997, vol. 23, no. 2, p. 138.
    14. Oganov, V.S. and Bogomolov, B.B., Human bone system in microgravity: review of research data, hypotheses and predictability of musculoskeletal system state in extended (exploration) missions, / Aviakosm. Ekolog. Med., 2009, vol. 43, no. 1, p. 3.
    15. Van Loon, J.J.W.A., Some history and use of the random positioning machine, rpm, in gravity related research, / Adv. Space Res., 2007, vol. 39, p. 1161. CrossRef
    16. Menon, S., Fessel, J., and West, J., Microarray studies in pulmonary arterial hypertension, / Int. J. Clin. Pract. Suppl., 2011, vol. 169, p. 19. doi: 10.1111/j.17421241.2010.02604.x. CrossRef
    17. Buravkova, L.B., Gershovich, Yu.G., and Grigor鈥檈v, A.I., Sensitivity of stromal precursor cells of different commitment to simulated microgravity, / Dokl. Biol. Sci., 2010, vol. 432, no. 1, p. 237. CrossRef
    18. Lisignoli, G., Codeluppi, K., Todoerti, K., et al., Gene array profile identifies collagen type XV as a novel human osteoblast-secreted matrix protein, / J. Cell Physiol., 2009, vol. 220, no. 2, p. 401. doi: 10.1002/jcp.21779. CrossRef
    19. Uusitalo, H., Hiltunen, A., S枚derstrom, M., et al., Expression of cathepsins B, H, K, L, and S and matrix metalloproteinases 9 and 13 during chondrocyte hypertrophy and endochondral ossification in mouse fracture callus, / Calcif. Tissue Int., 2000, vol. 67, no. 5, p. 382. CrossRef
    20. Hosogane, N., Huang, Z., Rawlins, B.A., et al., Stromal derived factor-1 regulates bone morphogenetic protein 2-induced osteogenic differentiation of primary mesenchymal stem cells, / Int. J. Biochem. Cell Biol., 2010, vol. 42, no. 7, p. 1132. doi: 10.1016/j.biocel.2010.03.020.Epub 2010 Mar 31. CrossRef
    21. Visigalli, D., Strangio, A., Palmieri, D., and Manduca, P., Hind limb unloading of mice modulates gene expression at the protein and mrna level in mesenchymal bone cells, / BMC Musculoskelet. Disord., 2010, vol. 11, p. 147. doi: 10.1186/1471-2474-11-147. CrossRef
    22. Pochampally, R.R., Ylostalo, J., Penfornis, P., et al., Histamine receptor H1 and dermatopontin: new downstream targets of the vitamin D receptor, / J. Bone Miner. Res., 2007, vol. 22, no. 9, p. 1338. CrossRef
    23. Robinson, J.A., Chatterjee-Kishore, M., Yaworsky, P.J., et al., Wnt/beta-catenin signaling is a normal physiological response to mechanical loading in bone, / J. Biol. Chem., 2006, vol. 281, no. 42, p. 31720. CrossRef
    24. Gershovich, Yu.G. and Buravkova, L.B., Interleukine production in culture of mesenchymal stromal cells of humans during simulation of the microgravity effects, / Aviakosm. Ekolog. Med., 2009, vol. 43, no. 3, p. 43.
    25. Chaudhary, L.R. and Avioli, L.V., Regulation of interleukin-8 gene expression by interleukin-1, osteotropic hormones, and protein kinase inhibitors in normal human bone marrow stromal cells, / J. Biol. Chem., 1996, vol. 271, no. 28, p. 16591. CrossRef
    26. Sumanasinghe, R.D., Pfeiler, T.W., Monteiro-Riviere, N.A., and Loboa, E.G., Expression of proinflammatory cytokines by human mesenchymal stem cells in response to cyclic tensile strain, / J. Cell Physiol., 2009, vol. 219, no. 1, p. 77. CrossRef
    27. Tremain, N., Korkko, J., Ibberson, D., et al., Microsage analysis of 2.353 expressed genes in a single cell-derived colony of undifferentiated human mesenchymal stem cells reveals mRNAs of multiple cell lineages, / Stem Cells, 2001, vol. 19, no. 5, p. 408. CrossRef
    28. Buravkova, L.B., Gershovich, P.M., Gershovich, Yu.G., and Grigor鈥檈v, A.I., Mechanisms of gravitational sensitivity of osteogenic precursor cells, / Acta Nat., 2010, vol. 2, no. 1, p. 30.
  • 作者单位:P. M. Gershovich (1)
    Yu. G. Gershovich (1)
    L. B. Buravkova (1)

    1. Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia
  • ISSN:1608-3164
文摘
Modified gravity is known to affect both the whole body and the molecular processes in individual cells. The purpose of the present study was to examine gene expression pattern in mesenchymal stromal cells (MSCs) of human bone marrow under the conditions of microgravity. Exposure of cell cultures on dRPM for 20 days resulted in significant changes in the expression of 144 genes. Thirty of these genes increased their expression, whereas the other 114 genes decreased their expression. Analysis of the genes revealed that most of them belonged to 11 principal groups according to their biological roles in the cell. Most genes with a changed expression were from the following groups: inflammatory responses and intercellular interactions, matrix and adhesion, metabolic processes, and signaling and regulation. We found that microgravity inhibited the expression of genes encoding the products, which play a key role in osteogenic differentiation including COL15A1, CXCL12, DPT, and WISP2 and are involved in intercellular interactions between MSCs and different types of bone marrow cells such as CXCL12 and SCG2. These molecular-genetic changes indicate the possible involvement of progenitor cells of osteogenic differon in the development of osteopeny under the conditions of microgravity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700