Design of a colicin E7 based chimeric zinc-finger nuclease
详细信息    查看全文
  • 作者:Eszter Németh (1)
    Gabriella K. Schilli (1)
    Gábor Nagy (2)
    Christoph Hasenhindl (3)
    Béla Gyurcsik (1) (4)
    Chris Oostenbrink (2)
  • 关键词:Metalloenzyme ; Zinc finger nuclease ; Colicin E7 ; Computational protein design
  • 刊名:Journal of Computer-Aided Molecular Design
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:28
  • 期:8
  • 页码:841-850
  • 全文大小:3,127 KB
  • 参考文献:1. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 93:1150-160
    2. Ramalingam S, Kandavelou K, Rajenderan R, Chandrasegaran S (2011) Creating designed zinc-finger nucleases with minimal cytotoxicity. J Mol Biol 405:630-41 CrossRef
    3. Moehle EA, Rock JM, Lee YL, Jouvenot Y, DeKelver RC, Gregory PD, Urnov FD, Holmes MC (2007) Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc Natl Acad Sci USA 104:3055-060 CrossRef
    4. Sharan SK, Thomason LC, Kuznetsov SG, Court DL (2009) Recombineering: a homologous recombination-based method of genetic engineering. Nat Protoc 4:206-23 CrossRef
    5. Connelly JP, Barker JC, Pruett-Miller S, Porteus MH (2010) Gene correction by homologous recombination with zinc finger nucleases in primary cells from a mouse model of a generic recessive genetic disease. Mol Ther 18:1103-110 CrossRef
    6. Wah DA, Hirsch JA, Dorner LF, Schildkraut I, Aggarwal AK (1997) Structure of the multimodular endonuclease FokI bound to DNA. Nature 388:97-00 CrossRef
    7. Wah DA, Bitinaite J, Schildkraut I, Aggarwal AK (1998) Structure of FokI has implications for DNA cleavage. Proc Natl Acad Sci USA 95:10564-0569 CrossRef
    8. Cornu TI, Thibodeau-Beganny S, Guhl E, Alwin S, Eichtinger M, Joung J, Cathomen T (2007) DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases. Mol Ther 16:352-58 CrossRef
    9. Kim H, Kim JS (2014) A guide to genome engineering with programmable nucleases. Nat Rev Genet 15:321-34 CrossRef
    10. Katherine H (2014) CRISPR technology for gene therapy. Nat Med 20:476-77 CrossRef
    11. Gyurcsik B, Czene A (2011) Towards artificial metallonucleases for gene therapy: recent advances and new perspectives. Future Med Chem 3:1935-966 CrossRef
    12. Czene A, Németh E, Zóka IG, Jakab-Simon NI, K?rtvélyesi T, Nagata K, Christensen HEM, Gyurcsik B (2013) The role of the N-terminal loop in the function of the colicin E7 nuclease domain. J Biol Inorg Chem 18:309-21 CrossRef
    13. Chak K, Kuo W, Lu F, James R (1991) Cloning and characterization of the Cole7 plasmid. J Gen Microbiol 137:91-00 CrossRef
    14. Lin Y, Liao C, Liang P, Yuan H, Chak K (2004) Involvement of colicin in the limited protection of the colicin producing cells against bacteriophage. Biochem Biophys Res Commun 318:81-7 CrossRef
    15. Orlowski J, Bujnicki JM (2008) Structural and evolutionary classification of type II restriction enzymes based on theoretical and experimental analyses. Nucleic Acids Res 36:3552-569 CrossRef
    16. Mehta P, Katta K, Krishnaswamy S (2004) HNH family subclassification leads to identification of commonality in the His-Me endonuclease superfamily. Protein Sci 13:295-00 CrossRef
    17. Doudeva L, Huang D, Hsia K, Shi Z, Li C, Shen Y, Cheng Y, Yuan H (2006) Crystal structural analysis and metal-dependent stability and activity studies of the ColE7 endonuclease domain in complex with DNA/Zn2+ or inhibitor/Ni2+. Protein Sci 15:269-80 CrossRef
    18. Pommer AJ, Cal S, Keeble AH, Walker D, Evans SJ, Kühlmann UC, Cooper A, Connolly BA, Hemmings AM, Moore GR, James R, Kleanthous C (2001) Mechanism and cleavage specificity of the H–N–H endonuclease colicin E9. J Mol Biol 314:735-49 CrossRef
    19. Eastberg JH, Eklund J, Monnat R Jr, Stoddard BL (2007) Mutability of an HNH nuclease imidazole general base and exchange of a deprotonation mechanism. Biochemistry 46:7215-225 CrossRef
    20. Shi Z, Chak K, Yuan H (2005) Identification of an essential cleavage site in ColE7 required for import and killing of cells. J Biol Chem 280:24663-4668 CrossRef
    21. Németh E, K?rtvélyesi T, Thulstrup PW, Christensen H, Ko?í?ek M, Nagata K, Czene A, Gyurcsik B (2014) Fine tuning of the catalytic activity of colicin E7 nuclease domain by systematic N-terminal mutations. Protein Sci. doi:10.1002/pro.2497
    22. Kim CA, Berg JM (1996) A 2.2?A resolution crystal structure of a designed zinc finger protein bound to DNA. Nat Struct Biol 3:940-45 CrossRef
    23. Nagy G, Gyurcsik B, Hoffmann EA, K?rtvélyesi T (2011) Theoretical design of a specific DNA–Zinc-finger protein interaction with semi-empirical quantum chemical methods. J Mol Graph Model 29:928-34 CrossRef
    24. Sui M, Tsai L, Hsia K, Doudeva L, Ku W, Han G, Yuan H (2002) Metal ions and phosphate binding in the H–N–H motif: crystal structures of the nuclease domain of ColE7/Im7 in complex with a phosphate ion and different divalent metal ions. Protein Sci 11:2947-957 CrossRef
    25. Cheng Y, Hsia K, Doudeva LG, Chak K, Yuan HS (2002) The crystal structure of the nuclease domain of colicin E7 suggests a mechanism for binding to double-stranded DNA by the H–N–H endonucleases. J Mol Biol 324:227-36 CrossRef
    26. Wang Y, Yang W, Li C, Doudeva LG, Yuan HS (2007) Structural basis for sequence-dependent DNA cleavage by nonspecific endonucleases. Nucleic Acids Res 35:584-94 CrossRef
    27. Kim CA, Berg JM (1996) A 2.2?A resolution crystal structure of a designed zinc finger protein bound to DNA. Nat Struct Biol 3:940-45 CrossRef
    28. Soares TA, Hunenberger PH, Kastenholz MA, Krautler V, Lenz T, Lins RD, Oostenbrink C, van Gunsteren WF (2005) An improved nucleic acid parameter set for the GROMOS force field. J Comput Chem 26:725-37 CrossRef
    29. Beaten L (2010) Reconstruction of protein structures from polypeptide fragment libraries. Thesis, Switch Laboratory, Vrije Universiteit Brussel
    30. Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L (2005) The FoldX web server: an online force field. Nucleic Acids Res 33:382-88 CrossRef
    31. Schmid N, Christ CD, Christen M, Eichenberger AP, van Gunsteren WF (2012) Architecture, implementation and parallelisation of the GROMOS software for biomolecular simulation. Comput Phys Commun 183:890-03 CrossRef
    32. Berendsen HJC, Postma JPM, van Gunsteren WF, Dinola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684-690 CrossRef
    33. Ryckaert J, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Chem Phys 23:327-41
    34. Eichenberger AP, Allison JR, Dolenc J, Geerke DP, Horta BAC, Meier K, Oostenbrink C, Schmid N, Steiner D, Wang D, van Gunsteren WF (2011) GROMOS++ software for the analysis of biomolecular simulation trajectories. J Chem Theory Comput 7:3379-390 CrossRef
    35. Németh E, K?rtvélyesi T, Ko?í?ek M, Thulstrup PW, Christensen HEM, Nagata M, Asaka, Kyosuke, Gyurcsik B (2014) Substrate binding activates the designed triple mutant of the colicin E7 metallonuclease. J Biol Inorg Chem (submitted)
    36. Anthony LC, Suzuki H, Filutowicz M (2004) Tightly regulated vectors for the cloning and expression of toxic genes. J Microbiol Methods 58:243-50 CrossRef
    37. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577-637 CrossRef
    38. Gyurcsik B, Czene A, Jankovics H, Jakab-Simon NI, ?laska-Kiss K, Kiss A, Kele Z (2013) Cloning, purification and metal binding of the HNH motif from colicin E7. Protein Expr Purif 89:210-18 CrossRef
    39. Maté MJ, Kleanthous C (2004) Structure-based analysis of the metal-dependent mechanism of H–N–H endonucleases. J Biol Chem 279:34763-4769 CrossRef
  • 作者单位:Eszter Németh (1)
    Gabriella K. Schilli (1)
    Gábor Nagy (2)
    Christoph Hasenhindl (3)
    Béla Gyurcsik (1) (4)
    Chris Oostenbrink (2)

    1. Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged, 6720, Hungary
    2. Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
    3. Christian Doppler Laboratory for Antibody Engineering, Department of Chemistry, Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
    4. MTA-SzTE Bioinorganic Chemistry Research Group of Hungarian Academy of Sciences, Dóm tér 7, Szeged, 6720, Hungary
  • ISSN:1573-4951
文摘
Colicin E7 is a natural bacterial toxin. Its nuclease domain (NColE7) enters the target cell and kills it by digesting the nucleic acids. The HNH-motif as the catalytic centre of NColE7 at the C-terminus requires the positively charged N-terminal loop for the nuclease activity—offering opportunities for allosteric control in a NColE7-based artificial nuclease. Accordingly, four novel zinc finger nucleases were designed by computational methods exploiting the special structural features of NColE7. The constructed models were subjected to MD simulations. The comparison of structural stability and functional aspects showed that these models may function as safely controlled artificial nucleases. This study was complemented by random mutagenesis experiments identifying potentially important residues for NColE7 function outside the catalytic region.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700