Identification and characterization of plant-specific NAC gene family in canola (Brassica napus L.) reveal novel members involved in cell death
详细信息    查看全文
  • 作者:Boya Wang (1)
    Xiaohua Guo (1)
    Chen Wang (1)
    Jieyu Ma (1)
    Fangfang Niu (1)
    Hanfeng Zhang (1)
    Bo Yang (1)
    Wanwan Liang (1)
    Feng Han (1)
    Yuan-Qing Jiang (1)

    1. State Key Laboratory of Crop Stress Biology for Arid Areas
    ; and College of Life Sciences ; Northwest A & F University ; Yangling ; 712100 ; Shaanxi ; China
  • 关键词:Abiotic stress ; Brassica napus ; Cell death ; NAC ; ROS ; Transcription factors
  • 刊名:Plant Molecular Biology
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:87
  • 期:4-5
  • 页码:395-411
  • 全文大小:2,205 KB
  • 参考文献:1. Aida, M, Ishida, T, Fukaki, H, Fujisawa, H, Tasaka, M (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9: pp. 841-857 CrossRef
    2. Bu, Q, Jiang, H, Li, CB, Zhai, Q, Zhang, J, Wu, X, Sun, J, Xie, Q, Li, C (2008) Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Res 18: pp. 756-767 CrossRef
    3. Chen, YN, Slabaugh, E, Brandizzi, F (2008) Membrane-tethered transcription factors in Arabidopsis thaliana: novel regulators in stress response and development. Curr Opin Plant Biol 11: pp. 695-701 CrossRef
    4. Coll, NS, Epple, P, Dangl, JL (2011) Programmed cell death in the plant immune system. Cell Death Differ 18: pp. 1247-1256 CrossRef
    5. Delessert, C, Kazan, K, Wilson, IW, Straeten, D, Manners, J, Dennis, ES, Dolferus, R (2005) The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant J 43: pp. 745-757 CrossRef
    6. Derelle, E, Ferraz, C, Rombauts, S, Rouze, P, Worden, AZ, Robbens, S, Partensky, F, Degroeve, S, Echeynie, S, Cooke, R, Saeys, Y, Wuyts, J, Jabbari, K, Bowler, C, Panaud, O, Piegu, B, Ball, SG, Ral, JP, Bouget, FY, Piganeau, G, Baets, B, Picard, A, Delseny, M, Demaille, J, Peer, Y, Moreau, H (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci USA 103: pp. 11647-11652 CrossRef
    7. Fang, Y, You, J, Xie, K, Xie, W, Xiong, L (2008) Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol Genet Genomics 280: pp. 547-563 CrossRef
    8. Faria, JA, Reis, PA, Reis, MT, Rosado, GL, Pinheiro, GL, Mendes, GC, Fontes, EP (2011) The NAC domain-containing protein, GmNAC6, is a downstream component of the ER stress- and osmotic stress-induced NRP-mediated cell-death signaling pathway. BMC Plant Biol 11: pp. 129 CrossRef
    9. Fujita, M, Fujita, Y, Maruyama, K, Seki, M, Hiratsu, K, Ohme-Takagi, M, Tran, LS, Yamaguchi-Shinozaki, K, Shinozaki, K (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39: pp. 863-876 CrossRef
    10. Greve, K, Cour, T, Jensen, MK, Poulsen, FM, Skriver, K (2003) Interactions between plant RING-H2 and plant-specific NAC (NAM/ATAF1/2/CUC2) proteins: RING-H2 molecular specificity and cellular localization. Biochem J 371: pp. 97-108 CrossRef
    11. Guo, Y, Gan, S (2006) AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J 46: pp. 601-612 CrossRef
    12. Guo, HS, Xie, Q, Fei, JF, Chua, NH (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for arabidopsis lateral root development. Plant Cell 17: pp. 1376-1386 CrossRef
    13. Hao, YJ, Song, QX, Chen, HW, Zou, HF, Wei, W, Kang, XS, Ma, B, Zhang, WK, Zhang, JS, Chen, SY (2010) Plant NAC-type transcription factor proteins contain a NARD domain for repression of transcriptional activation. Planta 232: pp. 1033-1043 CrossRef
    14. He, XJ, Mu, RL, Cao, WH, Zhang, ZG, Zhang, JS, Chen, SY (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44: pp. 903-916 CrossRef
    15. Hegedus, D, Yu, M, Baldwin, D, Gruber, M, Sharpe, A, Parkin, I, Whitwill, S, Lydiate, D (2003) Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Mol Biol 53: pp. 383-397 CrossRef
    16. Hrazdina, G, Zobel, AM, Hoch, HC (1987) Biochemical, immunological, and immunocytochemical evidence for the association of chalcone synthase with endoplasmic reticulum membranes. Proc Natl Acad Sci USA 84: pp. 8966-8970 CrossRef
    17. Hu, H, Dai, M, Yao, J, Xiao, B, Li, X, Zhang, Q, Xiong, L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103: pp. 12987-12992 CrossRef
    18. Hu, H, You, J, Fang, Y, Zhu, X, Qi, Z, Xiong, L (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67: pp. 169-181 CrossRef
    19. Jensen, MK, Rung, JH, Gregersen, PL, Gjetting, T, Fuglsang, AT, Hansen, M, Joehnk, N, Lyngkjaer, MF, Collinge, DB (2007) The HvNAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis. Plant Mol Biol 65: pp. 137-150 CrossRef
    20. Jensen, MK, Hagedorn, PH, Torres-Zabala, M, Grant, MR, Rung, JH, Collinge, DB, Lyngkjaer, MF (2008) Transcriptional regulation by an NAC (NAM-ATAF1,2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis. Plant J 56: pp. 867-880 CrossRef
    21. Jensen, MK, Kjaersgaard, T, Nielsen, MM, Galberg, P, Petersen, K, O鈥橲hea, C, Skriver, K (2010) The Arabidopsis thaliana NAC transcription factor family: structure-function relationships and determinants of ANAC019 stress signalling. Biochem J 426: pp. 183-196 CrossRef
    22. Jeong, JS, Kim, YS, Baek, KH, Jung, H, Ha, SH, Do Choi, Y, Kim, M, Reuzeau, C, Kim, JK (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153: pp. 185-197 CrossRef
    23. Jeong, JS, Kim, YS, Redillas, MC, Jang, G, Jung, H, Bang, SW, Choi, YD, Ha, SH, Reuzeau, C, Kim, JK (2012) OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Plant Biotechnol J 11: pp. 101-114 CrossRef
    24. Kaneda, T, Taga, Y, Takai, R, Iwano, M, Matsui, H, Takayama, S, Isogai, A, Che, FS (2009) The transcription factor OsNAC4 is a key positive regulator of plant hypersensitive cell death. EMBO J 28: pp. 926-936 CrossRef
    25. Kim, SY, Kim, SG, Kim, YS, Seo, PJ, Bae, M, Yoon, HK, Park, CM (2007) Exploring membrane-associated NAC transcription factors in Arabidopsis: implications for membrane biology in genome regulation. Nucleic Acids Res 35: pp. 203-213 CrossRef
    26. Kim, SG, Lee, S, Seo, PJ, Kim, SK, Kim, JK, Park, CM (2010) Genome-scale screening and molecular characterization of membrane-bound transcription factors in Arabidopsis and rice. Genomics 95: pp. 56-65 CrossRef
    27. Kjaersgaard, T, Jensen, MK, Christiansen, MW, Gregersen, P, Kragelund, BB, Skriver, K (2011) Senescence-associated barley NAC (NAM, ATAF1,2, CUC) transcription factor interacts with radical-induced cell death 1 through a disordered regulatory domain. J Biol Chem 286: pp. 35418-35429 CrossRef
    28. Lanier, W, Moustafa, A, Bhattacharya, D, Comeron, JM (2008) EST analysis of Ostreococcus lucimarinus, the most compact eukaryotic genome, shows an excess of introns in highly expressed genes. PLoS One 3: pp. e2171 CrossRef
    29. Larue, CT, Wen, J, Walker, JC (2009) A microRNA-transcription factor module regulates lateral organ size and patterning in Arabidopsis. Plant J 58: pp. 450-463 CrossRef
    30. Li, J, Zhang, J, Wang, X, Chen, J (2010) A membrane-tethered transcription factor ANAC089 negatively regulates floral initiation in Arabidopsis thaliana. Sci China Life Sci 53: pp. 1299-1306 CrossRef
    31. Liang, W-W, Yang, B, Yu, B-J, Zhou, Z-Z, Li, C, Sun, Y, Zhang, Y, Jia, M, Wu, F-F, Zhang, H-F, Wang, B-Y, Deyholos, M, Jiang, Y-Q (2013) Identification and analysis of MKK and MPK gene families in Canola (Brassica napus L.). BMC Genom 14: pp. 392 CrossRef
    32. Lu, PL, Chen, NZ, An, R, Su, Z, Qi, BS, Ren, F, Chen, J, Wang, XC (2007) A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Mol Biol 63: pp. 289-305 CrossRef
    33. Mallory, AC, Dugas, DV, Bartel, DP, Bartel, B (2004) MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol 14: pp. 1035-1046 CrossRef
    34. Mendes, GC, Reis, PA, Calil, IP, Carvalho, HH, Aragao, FJ, Fontes, EP (2013) GmNAC30 and GmNAC81 integrate the endoplasmic reticulum stress- and osmotic stress-induced cell death responses through a vacuolar processing enzyme. Proc Natl Acad Sci USA 110: pp. 19627-19632 CrossRef
    35. Mitsuda, N, Seki, M, Shinozaki, K, Ohme-Takagi, M (2005) The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell 17: pp. 2993-3006 CrossRef
    36. Mitsuda, N, Iwase, A, Yamamoto, H, Yoshida, M, Seki, M, Shinozaki, K, Ohme-Takagi, M (2007) NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell 19: pp. 270-280 CrossRef
    37. Nakashima, K, Tran, LS, Nguyen, D, Fujita, M, Maruyama, K, Todaka, D, Ito, Y, Hayashi, N, Shinozaki, K, Yamaguchi-Shinozaki, K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51: pp. 617-630 CrossRef
    38. Nakashima, K, Takasaki, H, Mizoi, J, Shinozaki, K, Yamaguchi-Shinozaki, K (2012) NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819: pp. 97-103 CrossRef
    39. Nuruzzaman, M, Manimekalai, R, Sharoni, AM, Satoh, K, Kondoh, H, Ooka, H, Kikuchi, S (2010) Genome-wide analysis of NAC transcription factor family in rice. Gene 465: pp. 30-44 CrossRef
    40. Olsen, AN, Ernst, HA, Leggio, LL, Skriver, K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10: pp. 79-87 CrossRef
    41. Ooka, H, Satoh, K, Doi, K, Nagata, T, Otomo, Y, Murakami, K, Matsubara, K, Osato, N, Kawai, J, Carninci, P, Hayashizaki, Y, Suzuki, K, Kojima, K, Takahara, Y, Yamamoto, K, Kikuchi, S (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res 10: pp. 239-247 CrossRef
    42. Ostergaard, L, King, GJ (2008) Standardized gene nomenclature for the Brassica genus. Plant Methods 4: pp. 10 CrossRef
    43. Puranik, S, Sahu, PP, Srivastava, PS, Prasad, M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17: pp. 369-381 CrossRef
    44. Puranik S, Sahu PP, Mandal SN, Venkata Suresh B, Parida SK, Prasad M (2013) Comprehensive genome-wide survey, genomic constitution and expression profiling of the NAC transcription factor family in foxtail millet (Setaria / italica L.). PLoS One 8:e64594
    45. Rechsteiner, M, Rogers, SW (1996) PEST sequences and regulation by proteolysis. Trends Biochem Sci 21: pp. 267-271 CrossRef
    46. Redillas, MC, Jeong, JS, Kim, YS, Jung, H, Bang, SW, Choi, YD, Ha, SH, Reuzeau, C, Kim, JK (2012) The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnol J 10: pp. 792-805 CrossRef
    47. Sablowski, RW, Meyerowitz, EM (1998) A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell 92: pp. 93-103 CrossRef
    48. Seo, PJ, Kim, SG, Park, CM (2008) Membrane-bound transcription factors in plants. Trends Plant Sci 13: pp. 550-556 CrossRef
    49. Seo, PJ, Kim, MJ, Park, JY, Kim, SY, Jeon, J, Lee, YH, Kim, J, Park, CM (2010) Cold activation of a plasma membrane-tethered NAC transcription factor induces a pathogen resistance response in Arabidopsis. Plant J 61: pp. 661-671 CrossRef
    50. Song, SY, Chen, Y, Chen, J, Dai, XY, Zhang, WH (2011) Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress. Planta 234: pp. 331-345 CrossRef
    51. Souer, E, Houwelingen, A, Kloos, D, Mol, J, Koes, R (1996) The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85: pp. 159-170 CrossRef
    52. Sun, L, Yang, ZT, Song, ZT, Wang, MJ, Sun, L, Lu, SJ, Liu, JX (2013) The plant-specific transcription factor gene NAC103 is induced by bZIP60 through a new cis-regulatory element to modulate the unfolded protein response in Arabidopsis. Plant J 76: pp. 274-286
    53. Sun, Y, Wang, C, Yang, B, Wu, F, Hao, X, Liang, W, Niu, F, Yan, J, Zhang, H, Wang, B, Deyholos, M, Jiang, Y-Q (2014) Identification and functional analysis of mitogen-activated protein kinase kinase kinase (MAPKKK) genes in canola (Brassica napus L.). J Exp Bot 65: pp. 2171-2188 CrossRef
    54. Takada, S, Hibara, K, Ishida, T, Tasaka, M (2001) The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development 128: pp. 1127-1135
    55. Takasaki, H, Maruyama, K, Kidokoro, S, Ito, Y, Fujita, Y, Shinozaki, K, Yamaguchi-Shinozaki, K, Nakashima, K (2010) The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Genet Genomics 284: pp. 173-183 CrossRef
    56. Tran, LS, Nakashima, K, Sakuma, Y, Simpson, SD, Fujita, Y, Maruyama, K, Fujita, M, Seki, M, Shinozaki, K, Yamaguchi-Shinozaki, K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16: pp. 2481-2498 CrossRef
    57. Tzfira, T, Tian, GW, Lacroix, B, Vyas, S, Li, J, Leitner-Dagan, Y, Krichevsky, A, Taylor, T, Vainstein, A, Citovsky, V (2005) pSAT vectors: a modular series of plasmids for autofluorescent protein tagging and expression of multiple genes in plants. Plant Mol Biol 57: pp. 503-516 CrossRef
    58. Vroemen, CW, Mordhorst, AP, Albrecht, C, Kwaaitaal, MA, Vries, SC (2003) The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis. Plant Cell 15: pp. 1563-1577 CrossRef
    59. Wang, X, Basnayake, BM, Zhang, H, Li, G, Li, W, Virk, N, Mengiste, T, Song, F (2009) The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens. Mol Plant Microbe Interact 22: pp. 1227-1238 CrossRef
    60. Wu, Y, Deng, Z, Lai, J, Zhang, Y, Yang, C, Yin, B, Zhao, Q, Zhang, L, Li, Y, Yang, C, Xie, Q (2009) Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res 19: pp. 1279-1290 CrossRef
    61. Xie, Q, Frugis, G, Colgan, D, Chua, NH (2000) Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev 14: pp. 3024-3036 CrossRef
    62. Xie, Q, Guo, HS, Dallman, G, Fang, S, Weissman, AM, Chua, NH (2002) SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature 419: pp. 167-170 CrossRef
    63. Xu, B, Ohtani, M, Yamaguchi, M, Toyooka, K, Wakazaki, M, Sato, M, Kubo, M, Nakano, Y, Sano, R, Hiwatashi, Y, Murata, T, Kurata, T, Yoneda, A, Kato, K, Hasebe, M, Demura, T (2014) Contribution of NAC transcription factors to plant adaptation to land. Science 343: pp. 1505-1508 science.1248417" target="_blank" title="It opens in new window">CrossRef
    64. Yamaguchi, M, Ohtani, M, Mitsuda, N, Kubo, M, Ohme-Takagi, M, Fukuda, H, Demura, T (2010) VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vessel formation in Arabidopsis. Plant Cell 22: pp. 1249-1263 CrossRef
    65. Yang, B, Srivastava, S, Deyholos, MK, Kav, NNV (2007) Transcriptional profiling of canola (Brassica napus L.) responses to the fungal pathogen Sclerotinia sclerotiorum. Plant Sci 173: pp. 156-171 CrossRef
    66. Yang, B, Jiang, Y, Rahman, MH, Deyholos, MK, Kav, NN (2009) Identification and expression analysis of WRKY transcription factor genes in canola (Brassica napus L.) in response to fungal pathogens and hormone treatments. BMC Plant Biol 9: pp. 68 CrossRef
    67. Yang, SD, Seo, PJ, Yoon, HK, Park, CM (2011) The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes. Plant Cell 23: pp. 2155-2168 CrossRef
    68. Yang, ZT, Wang, MJ, Sun, L, Lu, SJ, Bi, DL, Sun, L, Song, ZT, Zhang, SS, Zhou, SF, Liu, JX (2014) The membrane-associated transcription factor NAC089 controls ER-stress-induced programmed cell death in plants. PLoS Genet 10: pp. e1004243 CrossRef
    69. Yoo, SD, Cho, YH, Sheen, J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2: pp. 1565-1572 CrossRef
    70. Zhang, H, Yang, B, Liu, WZ, Li, H, Wang, L, Wang, B, Deng, M, Liang, W, Deyholos, MK, Jiang, YQ (2014) Identification and characterization of CBL and CIPK gene families in canola (Brassica napus L.). BMC Plant Biol 14: pp. 8 CrossRef
    71. Zhong, R, Demura, T, Ye, ZH (2006) SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell 18: pp. 3158-3170 CrossRef
    72. Zhong, H, Guo, QQ, Chen, L, Ren, F, Wang, QQ, Zheng, Y, Li, XB (2012) Two Brassica napus genes encoding NAC transcription factors are involved in response to high-salinity stress. Plant Cell Rep 31: pp. 1991-2003 CrossRef
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
    Biochemistry
    Plant Pathology
  • 出版者:Springer Netherlands
  • ISSN:1573-5028
文摘
NAC transcription factors are plant-specific and play important roles in plant development processes, response to biotic and abiotic cues and hormone signaling. However, to date, little is known about the NAC genes in canola (or oilseed rape, Brassica napus L.). In this study, a total of 60 NAC genes were identified from canola through a systematical analysis and mining of expressed sequence tags. Among these, the cDNA sequences of 41 NAC genes were successfully cloned. The translated protein sequences of canola NAC genes with the NAC genes from representative species were phylogenetically clustered into three major groups and multiple subgroups. The transcriptional activities of these BnaNAC proteins were assayed in yeast. In addition, by quantitative real-time RT-PCR, we further observed that some of these BnaNACs were regulated by different hormone stimuli or abiotic stresses. Interestingly, we successfully identified two novel BnaNACs, BnaNAC19 and BnaNAC82, which could elicit hypersensitive response-like cell death when expressed in Nicotiana benthamiana leaves, which was mediated by accumulation of reactive oxygen species. Overall, our work has laid a solid foundation for further characterization of this important NAC gene family in canola.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700