Analysis of Shear-Induced Platelet Aggregation and Breakup
详细信息    查看全文
  • 作者:Rudolf Hellmuth ; Mark S. Bruzzi ; Nathan J. Quinlan
  • 关键词:Biophysics ; Blood platelets ; Kinetics ; Mechanical ; Models ; Platelet aggregation
  • 刊名:Annals of Biomedical Engineering
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:44
  • 期:4
  • 页码:914-928
  • 全文大小:1,302 KB
  • 参考文献:1.Bäbler, M. U., M. Morbidelli. Analysis of the aggregation-fragmentation population balance equation with application to coagulation. J. Colloid Interface Sci. 316(2):428–441, 2007. doi:10.​1016/​j.​jcis.​2007.​08.​029 .CrossRef PubMed
    2.Barthelmes, G., S. Pratsinis, H. Buggisch. Particle size distributions and viscosity of suspensions undergoing shear-induced coagulation and fragmentation. Chem. Eng. Sci. 58(13): 2893–2902, 2003. doi:10.​1016/​S0009-2509(03)00133-7 .CrossRef
    3.Bell, D. N., S. Spain, H. L. Goldsmith. Adenosine diphosphate-induced aggregation of human platelets in flow through tubes. II. Effect of shear rate, donor sex, and ADP concentration. Biophys. J. 56(5):829–843, 1989. Doi:10.​1016/​S0006-3495(89)82729-8 .CrossRef PubMed PubMedCentral
    4.Blatz, P. J., A. V. Tobolsky. Note on the kinetics of systems manifesting simultaneous polymerization-depolymerization phenomena. J. Phys. Chem. 49(2):77–80, 1945. doi:10.​1021/​j150440a004 .CrossRef
    5.Born, G. V. R., M. Hume. Effects of the numbers and sizes of platelet aggregates on the optical density of plasma. Nature 215(5105):1027–1029, 1967. doi:10.​1038/​2151027a0 .CrossRef PubMed
    6.Chang, H. N., C. R. Robertson. Platelet aggregation by laminar shear and Brownian motion. Ann. Biomed. Eng. 4(2):151–183, 1976. doi:10.​1007/​BF02363645 CrossRef PubMed
    7.David, P., A. C. Nair, V. Menon, D. Tripathi. Laser light scattering studies from blood platelets and their aggregates. Colloids Surf. B 6(2):101–114, 1996. doi:10.​1016/​0927-7765(95)01236-2 .CrossRef
    8.Diamond, S. L. Systems biology of coagulation. J. Thromb. Haemostasis 11(Suppl.1):224–232, 2013. doi:10.​1111/​jth.​12220
    9.Frojmovic, M. M., J. G. Milton. Human platelet size, shape, and related functions in health and disease. Physiol. Rev. 62(1):185–261, 1982.PubMed
    10.Goldsmith, H. L., D. N. Bell, S. Braovac, A. Steinberg, F. McIntosh. Physical and chemical effects of red cells in the shear-induced aggregation of human platelets. Biophys. J. 69(4):1584–95, 1995. Doi:10.​1016/​S0006-3495(95)80031-7 .
    11.Goldsmith, H. L., D. N. Bell, S. Spain, F. A. McIntosh. Effect of red blood cells and their aggregates on platelets and white cells in flowing blood. Biorheology 36(5–6):461–468, 1999.PubMed
    12.Goldsmith, H. L., S. Spain. Margination of leukocytes in blood flow through small tubes. Microvasc. Res. 27(2):204–222, 1984. doi:10.​1016/​0026-2862(84)90054-2 .CrossRef PubMed
    13.Huang, P. Y., J. D. Hellums. Aggregation and disaggregation kinetics of human blood platelets: Part III. The disaggregation under shear stress of platelet aggregates. Biophys. J. 65(1):354–361 (1993a). doi:10.​1016/​S0006-3495(93)81080-4 .CrossRef PubMed PubMedCentral
    14.Huang, P. Y., J. D. Hellums. Aggregation and disaggregation kinetics of human blood platelets: Part I. Development and validation of a population balance method. Biophys. J. 65(1):334–43, 1993c. doi:10.​1016/​S0006-3495(93)81078-6 .CrossRef PubMed PubMedCentral
    15.Huang, P. Y., J. D. Hellums. Aggregation and disaggregation kinetics of human blood platelets: Part II. Shear-induced platelet aggregation. Biophys. J. 65(1):344–53, 1993b. doi:10.​1016/​S0006-3495(93)81079-8 .CrossRef PubMed PubMedCentral
    16.Hund, S. J., J. F. Antaki, An extended convection diffusion model for red blood cell-enhanced transport of thrombocytes and leukocytes. Phys. Med. Biol. 54(20):6415–6435, 2009. doi:10.​1088/​0031-9155/​54/​20/​024 .CrossRef PubMed PubMedCentral
    17.Kao, S. V., S. G. Mason. Dispersion of particles by shear. Nature 253(5493):619–621, 1975. doi:10.​1038/​253619a0 .CrossRef
    18.Kostoglou, M., A. J. Karabelas. On the self-similarity of the aggregationGçôfragmentation equilibrium particle size distribution. J. Aerosol Sci. 30(2):157–162, 1999. doi:10.​1016/​S0021-8502(98)00045-7 .
    19.Kramer, T., Clark, M. Incorporation of aggregate breakup in the simulation of orthokinetic coagulation. J. Colloid Interface Sci. 216(1):116–126 (1999). doi:10.​1006/​jcis.​1999.​6305 .CrossRef PubMed
    20.Kroll, M. H., J. D. Hellums, L. V. McIntire, A. I. Schafer, J. L. Moake. Platelets and shear stress. Blood 88(5):1525–1541, 1996.PubMed
    21.Kuharsky, A. L., A. L. Fogelson. Surface-mediated control of blood coagulation: the role of binding site densities and platelet deposition. Biophys. J. 80(3):1050–1074, 2001. doi:10.​1016/​S0006-3495(01)76085-7 .CrossRef PubMed PubMedCentral
    22.Kumar, S., Ramkrishna, D. On the solution of population balance equations by discretizationGçöI. A fixed pivot technique. Chem. Eng. Sci. 51(8):1311–1332, 1996. doi:10.​1016/​0009-2509(96)88489-2 .
    23.Landolfi, R., R. De Cristofaro, E. De Candia, B. Rocca, B. Bizzi. Effect of fibrinogen concentration on the velocity of platelet aggregation. Blood 78(2):377–381, 1991. doi:10.​1016/​0049-3848(91)90490-N .PubMed
    24.Lattuada, M., P. Sandkühler, H. Wu, J. Sefcik, M. Morbidelli. Aggregation kinetics of polymer colloids in reaction limited regime: experiments and simulations. Adv. Colloid Interface Sci. 103(1):33–56, 2003. doi:10.​1016/​S0001-8686(02)00082-9 .CrossRef PubMed
    25.Leiderman, K., A. L. Fogelson. Grow with the flow: a spatial-temporal model of platelet deposition and blood coagulation under flow. Math. Med. Biol. 28(1):47–84, 2011. doi:10.​1093/​imammb/​dqq005 .CrossRef PubMed PubMedCentral
    26.Lin, M. Y., H. M. Lindsay, D. A. Weitz, R. C. Ball, R. Klein, P. Meakin. Universality in colloid aggregation. Nature 339(6223):360–362, 1989. doi:10.​1038/​339360a0 .CrossRef
    27.Moiseyev, G., P. Z. Bar-Yoseph. Computational modeling of thrombosis as a tool in the design and optimization of vascular implants. J. Biomech. 46(2):248–252 (2013). doi:10.​1016/​j.​jbiomech.​2012.​11.​002 .CrossRef PubMed
    28.Nesbitt, W. S., E. Westein, F. J. Tovar-Lopez, E. Tolouei, A. Mitchell, J. Fu, J. Carberry, A. Fouras, S. P. Jackson. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat. Med. 15(6):665–673, 2009. doi:10.​1038/​nm.​1955 .CrossRef PubMed
    29.Oliphant, T. E. Python for scientific computing. Comput. Sci. Eng. 9(3):10–20, 2007. doi:10.​1109/​MCSE.​2007.​58 .CrossRef
    30.Pandya, J., L. Spielman. Floc breakage in agitated suspensions: theory and data processing strategy. J. Colloid Interface Sci. 90(2):517–531, 1982. doi:10.​1016/​0021-9797(82)90317-4 .CrossRef
    31.Pandya, J., L. Spielman. Floc breakage in agitated suspensions: effect of agitation rate. Chem. Eng. Sci. 38(12):1983–1992, 1983. doi:10.​1016/​0009-2509(83)80102-X .CrossRef
    32.Paulus, J. M. Platelet size in man. Blood 46(3):321–36, 1975.PubMed
    33.Pedocchi, F., I. Piedra-Cueva. Camp and SteinGçös velocity gradient formalization. J. Environ. Eng. 131(10):1369–1376, 2005. doi:10.​1061/​(ASCE)0733-9372(2005)131:​10(1369) .CrossRef
    34.Reif, F. Statistical Physics 398 (McGraw-Hill, New York, 1967).
    35.Saffman, P. G., J. S. Turner. On the collision of drops in turbulent clouds. J. Fluid Mech. 1(01):16–30, 1956. doi:10.​1017/​S002211205600002​0 .CrossRef
    36.Schneider, S. W., S. Nuschele, A. Wixforth, C. Gorzelanny, A. Alexander-Katz, R.R. Netz, M.F. Schneider. Shear-induced unfolding triggers adhesion of von Willebrand factor fibers. Proc. Natl. Acad. Sci. USA. 104(19):7899–903,2007. doi:10.​1073/​pnas.​0608422104 .CrossRef PubMed PubMedCentral
    37.Singh, I., E. Themistou, L. Porcar, S. Neelamegham. Fluid shear induces conformation change in human blood protein von Willebrand factor in solution. Biophys. J. 96(6):2313–2320, 2009. doi:10.​1016/​j.​bpj.​2008.​12.​3900 .CrossRef PubMed PubMedCentral
    38.Slomkowski, S, J. V. Alemán, R. G. Gilbert, M. Hess, K. Horie, R. G. Jones, P. Kubisa, I. Meisel, W. Mormann, S. Penczek, R. F. T. Stepto. Terminology of polymers and polymerization processes in dispersed systems (IUPAC Recommendations 2011). Pure Appl. Chem. 83(12):2229–2259, 2011. doi:.10.​1351/​PAC-REC-10-06-03 CrossRef
    39.Soos, M, J. Sefcik, M. Morbidelli. Investigation of aggregation, breakage and restructuring kinetics of colloidal dispersions in turbulent flows by population balance modeling and static light scattering. Chem. Eng. Sci. 61(8):2349–2363, 2006. doi:10.​1016/​j.​ces.​2005.​11.​001 .CrossRef
    40.Sorensen, C. M. The mobility of fractal aggregates: a review. Aerosol Sci. Technol. 45(7):765–779, 2011. doi:10.​1080/​02786826.​2011.​560909 .CrossRef
    41.Sorensen, E. N., G. W. Burgreen, W. R. Wagner, J. F. Antaki, Computational simulation of platelet deposition and activation: II. Results for Poiseuille flow over collagen. Ann. Biomed. Eng. 27(4):449–458, 1999.CrossRef PubMed
    42.Sorensen, E. N., G. W. Burgreen, W. R. Wagner, J. F. Antaki. Computational simulation of platelet deposition and activation: I. Model development and properties. Ann. Biomed. Eng. 27(4):436–48, 1999.CrossRef PubMed
    43.Spicer, P. T., S. E. Pratsinis. Coagulation and fragmentation: universal steady-state particle-size distribution. AIChE J. 42(6):1612–1620, 1996. doi:10.​1002/​aic.​690420612 .CrossRef
    44.Spicer, P. T., S. E. Pratsinis, J. Raper, R. Amal, G. Bushell, G. Meesters. Effect of shear schedule on particle size, density, and structure during flocculation in stirred tanks. Powder Technol. 97(1):26–34, 1998. doi:10.​1016/​S0032-5910(97)03389-5 .CrossRef
    45.Spicer, P. T., S. E. Pratsinis, M. D. Trennepohl, G. H. M. Meesters. Coagulation and fragmentation: the variation of shear rate and the time lag for attainment of steady state. Ind. Eng. Chem. Res. 35(9):3074–3080, 1996. doi:10.​1021/​ie950786n .CrossRef
    46.von Smoluchowski, M. R. Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen. Physikalische Zeitschrift 17:585–599, 1916.
    47.von Smoluchowski, M. R., Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Zeitschrift fuer physikalische Chemie 92(1912):129–168, 1917.
    48.Westein, E., A. D. van der Meer, M. J. E. Kuijpers, J. P. Frimat, A. van den Berg, J. W. M. Heemskerk. Atherosclerotic geometries exacerbate pathological thrombus formation poststenosis in a von Willebrand factor-dependent manner. Proc. Natl. Acad. Sci. USA 110(4):1357–1362, 2013. doi:10.​1073/​pnas.​1209905110 .CrossRef PubMed PubMedCentral
    49.Xia, Z., M. M. Frojmovic. Aggregation efficiency of activated normal or fixed platelets in a simple shear field: effect of shear and fibrinogen occupancy. Biophys. J. 66(6):2190–201, 1994. doi:10.​1016/​S0006-3495(94)81015-X .CrossRef PubMed PubMedCentral
  • 作者单位:Rudolf Hellmuth (1) (2)
    Mark S. Bruzzi (2) (3)
    Nathan J. Quinlan (1) (2)

    1. Mechanical Engineering, National University of Ireland Galway, University Road, Galway, Ireland
    2. Biomechanics Research Centre, National University of Ireland Galway, University Road, Galway, Ireland
    3. Bioinnovate Ireland, National University of Ireland Galway, University Road, Galway, Ireland
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Biomedicine
    Biomedical Engineering
    Biophysics and Biomedical Physics
    Mechanics
    Biochemistry
  • 出版者:Springer Netherlands
  • ISSN:1573-9686
文摘
To better understand the mechanisms leading to the formation of thrombi of hazardous sizes in the bulk of the blood, we have developed a kinetic model of shear-induced platelet aggregation (SIPA). In our model, shear rate regulates a mass-conservative population balance equation which computes the aggregation and disaggregation of platelets in a cluster mass distribution. Aggregation is modeled by the Smoluchowski coagulation equation, and disaggregation is incorporated using the aggregate breakup model of Pandya and Spielman. Previous experimental data for SIPA have been correlated with a special case of this model where only the two-body collision of free platelets was considered. However, the two-body collision theory is oblivious to the steady-state condition, and it required the use of a shear-dependent aggregation efficiency parameter to fit it to experimental data. Our method not only predicts steady states but also correlates with literature data without employing a shear-dependent aggregation efficiency.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700