Collision and mountain building
详细信息    查看全文
  • 作者:V. G. Trifonov
  • 关键词:collision ; mountain building ; intensification of vertical motions
  • 刊名:Geotectonics
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:50
  • 期:1
  • 页码:1-20
  • 全文大小:3,498 KB
  • 参考文献:1.E. V. Artyushkov, Physical Tectonics (Nauka, Moscow, 1993) [in Russian].
    2.E. V. Artyushkov, “Abrupt continental lithosphere weakening as a precondition for fast and large-scale tectonic movements,” Geotectonics 37, 107–123 (2003).
    3.E. V. Artyushkov, “Neotectonic crustal uplifts as a consequence of mantle fluid infiltration into the lithosphere,” Russ. Geol. Geophys. 53, 566–582 (2012).CrossRef
    4.A. T. Aslanyan, Regional Geology of Armenia (Aipetrat, Yerevan, 1958) [in Russian].
    5.D. M. Bachmanov, “Age zoning of coarse molasse in the Outer Zagros and migration of the recent orogeny,” Geotectonics 35, 505–509 (2001).
    6.B. M. Bogachkin, Tectonic Evolution of the Gorny Altai during the Cenozoic (Nauka, Moscow, 1981) [in Russian].
    7. Greater Caucasus in the Alpine Epoch, Ed. by Yu. G. Leonov (GEOS, Moscow, 2007) [in Russian].
    8.A. A. Gabrielyan, Paleogene and Neogene of the Armenian SSR (Izd. Akad. Nauk Arm. SSR, Yerevan, 1964) [in Russian].
    9.P. D. Gamkrelidze and I. P. Gamkrelidze, Nappes on the Southern Slope of Greater Caucasus, Vol. 57 of Tr. Geol. Inst. Akad. Nauk Gruz. SSR. Nov. Ser. (Metsniereba, Tbilisi, 1965) [in Russian].
    10.I. I. Grekov, S. G. Korsakov, M. A. Kompaniets, V. A. Lavrishchev, A. N. Pis’mennyi, I. N. Semenukha, “Geoelectrical model of the crust in the Russian sector of Greater Caucasus,” in Obshchie i regional’nye problemy tektoniki i geodinamiki (GEOS, Moscow, 2008), Vol. 1, pp. 239–244.
    11.E. V. Devyatkin, Cenozoic Deposits and Neotectonics of the Southeastern Altai (Nauka, Moscow, 1965) [in Russian].
    12.J. F. Dewey and J. M. Bird, “Mountain belts and the new global tectonics,” J. Geophys. Res. 75, 2625–2647 (1970). doi 10.1029/JB075i014p02625CrossRef
    13.A. V. Ershov and A. M. Nikishin, “Recent Geodynamics of the Caucasus–Arabia–East Africa Region,” Geotectonics 38, 123–136 (2004).
    14.D. Zhao, F. Pirajno, N. L. Dobretsov, and L. Liu, “Mantle structure and dynamics under East Russia and adjacent regions,” Russ. Geol. Geophys. 51, 925–938 (2010).CrossRef
    15.V. S. Zykin, Stratigraphy and Evolution of the Natural Environment and Climate in the Southern West Siberia during the Late Cenozoic (Akad. Izd. Geo, Novosibirsk, 2012) [in Russian].
    16.V. S. Zykin and A. Yu. Kazanskii, “Stratigraphy and paleomagnetism of the Cenozoic (pre-Quaternary) deposits in the Chuya depression, Gorny Altai,” Geol. Geofiz. 36 (10), 75–90 (1995).
    17. The Neotectonic Map of Southern USSR, Scale 1: 1000000, Ed. by L. P. Polkanova (VNIGNI, Leningrad, 1971).
    18.A. L. Knipper, A. A. Savel’ev, and M. Rukie, “Ophiolitic association of the Northwestern Syria,” Geotektonika, No. 1, 92–104 (1988).
    19.A. I. Kozhurin, “Active geodynamics of the northwestern sector of the Pacific tectonic belt from the studies of active faults,” Extended Abstract of Doctoral Dissertation in Geology and Mineralogy (GIN RAN, Moscow, 2013).
    20.M. L. Kopp and I. G. Shcherba, “Caucasian basin in Paleogene,” Geotektonika, No. 2, 29–50 (1998).
    21.G. V. Krasnopevtseva, Deep Structure of the Caucasus Seismoactive Region (Nauka, Moscow, 1984) [in Russian].
    22.N. B. Kuznetsov, A. A. Soboleva, E. L. Miller, O. V. Udoratina, G. Gehrels, and T. V. Romanyuk, “First U–Pb datings of detrital zircons from Middle and Upper Paleozoic sandstones of the Polar Urals: Testing the regional tectonic models,” Dokl. Earth Sci. 451, 692–697 (2013).CrossRef
    23.V. A. Lebedev, S. N. Bubnov, O. Z. Dudauri, and G. T. Vashakidze, “Geochronology of Pliocene volcanism in the Dzhavakheti Highland (the Lesser Caucasus). Part 2: Eastern part of the Dzhavakheti Highland. Regional geological correlation,” Stratigr. Geol. Correl. 16, 553–574 (2008).CrossRef
    24.Yu. G. Leonov, “The recent activation and Alpine orogenesis,” Geotektonika, No. 2, 3–14 (1972).
    25.Yu. G. Leonov, Tectonic Nature of the Devonian Orogeny (Nedra, Moscow, 1976) [in Russian].
    26.Yu. G. Leonov, “Global orogenic events: Orogenic periods and tectogenesis epochs,” in Problemy global’noi korrelyatsii geologicheskikh yavlenii (Nauka, Moscow, 1980), pp. 33–71.
    27.A. V. Marinin and L. M. Rastsvetaev, “Structural parageneses of Northwestern Caucasus,” in Problemy tektonofiziki (IFZ RAN, Moscow, 2008), pp. 191–224.
    28.E. E. Milanovskii, Neotectonics of the Caucasus (Nedra, Moscow, 1968) [in Russian].
    29.E. E. Milanovskii and N. V. Koronovskii, Orogenic Volcanism and Tectonics of the Eurasian Alpine Belt (Nedra, Moscow, 1973) [in Russian].
    30.E. E. Milanovskii and V. E. Khain, Geologic Structure of Caucasus (Mosk. Gos. Univ., Moscow, 1963) [in Russian].
    31.A. A. Mossakovskii, Orogenic Structures and Volcanism of the Eurasian Paleozoides, Vol. 268 of Tr. Geol. Inst. Akad. Nauk SSSR (Nauka, Moscow, 1975) [in Russian].
    32. Neotectonics, Modern Geodynamics, and Seismic Hazard of Syria, Ed. by V. G. Trifonov (GEOS, Moscow, 2012) [in Russian].
    33.E. Ohtani and D. Zhao, “The role of water in the deep upper mantle and transition zone: dehydration of stagnant slabs and its effects on the big mantle wedge,” Russ. Geol. Geophys. 50, 1073–1072 (2009).CrossRef
    34.D. I. Panov, “Structural-facial zoning of Greater Caucasus at the pre-Alpine stage of evolution (Early and Middle Jurassic),” Byull. Mosk. O–va Ispyt. Prir., Otd. Geol. 63 (1), 13–24 (1988).
    35.D. I. Panov, “Tectonic structure of the Jurassic terrigenous complex of Greater Caucasus: Age and Mechanism of formation,” Sb. Nauchn. Tr. Sev.-Kavk. Gos. Tekhn. Univ., Ser. Tekton. Geodin., No. 1, 60–70 (2002).
    36.L. M. Parfenov, A. V. Prokop’ev, and V. B. Spektor, “Relief of the Earth’s surface and the history of its formation,” in Tektonika, geodinamika i metallogeniya territorii Respubliki Sakha (Yakutiya), Ed. by L. M. Parfenov and M. I. Kuz’min (MAIK Nauka/Interperiodika, Moscow, 2001), pp. 12–32.
    37.V. N. Puchkov, Paleogeodynamics of the Southern and Middle Urals (Dauriya, Ufa, 2000) [in Russian].
    38.V. N. Puchkov, Geology of the Urals and Cis-Uralian Region: Topical Issues of Stratigraphy, Tectonics, Geodynamics, and Metallogeny (DizainPoligrafServis, Ufa, 2010) [in Russian].
    39.Yu. M. Pushcharovskii and D. Yu. Pushcharovskii, Geology of the Earth’s Mantle (GEOS, Moscow, 2010) [in Russian].
    40.T. V. Romanyuk, “The Late Cenozoic geodynamic evolution of the central segment of the Andean subduction zone,” Geotectonics 43, 305–323 (2009).CrossRef
    41.Yu. V. Sayadyan, The Recent Geological History of Armenia (Gitutyun, Yerevan, 2009) [in Russian].
    42.V. N. Smirnov, “Northeastern Eurasia,” in Noveishaya tektonika, geodinamika i seismichnost’ Severnoi Evrazii, Ed. by A. F. Grachev (OIFZ RAN, Moscow, 2000), pp. 120–133.
    43.S. Yu. Sokolov and V. G. Trifonov, “Role of the asthenosphere in transfer and deformation of the lithosphere: The Ethiopian–Afar Superplume and the Alpine–Himalayan Belt,” Geotectonics 46, 171–184 (2012).CrossRef
    44.S. N. Sychev, “Structure and evolution of the Main Uralian Fault zone: A case study of the southern part of the Polar Urals,” Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (GIN RAN, Moscow, 2015).
    45.V. G. Trifonov, E. V. Artyushkov, A. E. Dodonov, D. M. Bachmanov, A. V. Mikolaichuk, and F. A. Vishnyakov, “Pliocene–Quaternary orogeny in the Central Tien Shan,” Russ. Geol. Geophys. 49, 98–112 (2008).CrossRef
    46.V. G. Trifonov, T. P. Ivanova, and D. M. Bachmanov, “Evolution of the central Alpine-Himalayan belt in the Late Cenozoic,” Russ. Geol. Geophys. 53, 221–233 (2012).CrossRef
    47.V. G. Trifonov, T. P. Ivanova, and D. M. Bachmanov, “Recent mountain building of the central Alpine–Himalayan Belt,” Geotectonics 46, 315–332 (2012).CrossRef
    48.V. G. Trifonov, O. V. Soboleva, R. V. Trifonov, and G. A. Vostrikov, Modern Geodynamics of the Alpine–Himalayan Collision Belt (GEOS, Moscow, 2002) [in Russian].
    49.I. V. Chernyshev, V. A. Lebedev, M. M. Arakelyants, R. T. Jrbashyan, and Yu. G. Gukasyan, “Quaternary geochronology of the Aragats volcanic center, Armenia: Evidence from K–Ar dating,” Dokl. Earth Sci. 384, 393–398 (2002).
    50.V. I. Shevchenko, T. V. Guseva, A. A. Lukk, A. V. Mishin, M. T. Prilepin, R. E. Reilinger, M. W. Hamburger, A. G. Shempelev, and S. L. Yunga, “Recent geodynamics of the Caucasus Mountains from GPS and seismological evidence,” Izv., Phys. Solid Earth 35, 691–704 (1999).
    51.S. S. Shul’ts, “Modern zones of ororgenesis, their tectonic features, and position in the general structure of the Earth’s crust,” Nauchn. Dokl. Vyssh. Shkoly., Geol.-Geogr. Nauki, No. 1, 23–41 (1958).
    52.I. G. Shcherba, Stages and Phases of the Cenozoic Evolution of the Alpine Zone (Nauka, Moscow, 1993) [in Russian].
    53.E. M. Shcherbakova, Ancient Glaciation of Greater Caucasus (Mosk. Gos. Univ., Moscow, 1973) [in Russian].
    54.F. L. Yakovlev, “Construction of the relief of the cover–basement interface beneath Greater Caucasus on the basis of defining the values of folded structures’ shortening,” in Oblasti aktivnogo tektogeneza v sovremennoi i drevnei istorii Zemli. Materialy 39-go tektonicheskogo soveshchaniya (GEOS, Moscow, 2006), Vol. 2, pp. 411–415.
    55.F. L. Yakovlev, “The first version of 3D model of sedimentary cover structure in the Northwestern Caucasus from the data of folded deformation field,” in Problemy tektonofiziki (IFZ RAN, Moscow, 2008), pp. 335–345.
    56.F. L. Yakovlev, “Reconstruction of the balanced structure of the eastern part of Alpine Greater Caucasus using data from quantitative analysis of linear folding: Case study,” Vestn. KRAUNTs, Nauki Zemle, No. 1, 191–214 (2012).
    57.S. A. Adamia, G. Zakariadze, T. Chkhotua, N. Sadradze, N. Tsereteli, A. Chabukiani, S. Gventsadze, “Geology of the Caucasus: A review,” Turkish J. Earth Sci. 20, 489–544 (2011).
    58.J. C. Aitchison, J. R. Ali, and A. V. Davis, “When and where did India and Asia collide?,” J. Geophys. Res.: Solid Earth 112, 1–19 (2007).
    59.A. C. Akinci, U. C. Ünlügenç, and A. H. F. Robertson, “Sedimentary evidence for the Cenozoic development of the NE Anatolian Thrust Belt,” in 8th Iternational Symposium on Eastern Mediterranean Geology. Abstracts, Mugla, Turkey, 2014, p. 38.
    60.E. V. Artyushkov and A. Hofmann, “The Neotectonic crustal uplift on the continents and its possible mechanisms. The case of Southern Africa,” Surv. Geophys. 15, 515–544 (1998).
    61.D. I. Axelrod, “Post-Pliocene uplift of the Sierra Nevada, California,” Bull. Geol. Soc. Am., 73, 183–198 (1962).CrossRef
    62.D. M. Bachmanov, V. G. Trifonov, Kh. T. Hessami, A. I. Kozhurin, T. P. Ivanova, E. A. Rogozhin, M. C. Hademi, and F. H. Jamali, “Active faults in the Zagros and central Iran,” Tectonophysics 380, 221–242 (2004).CrossRef
    63.J. C. Behrendt and A. Cooper, “Evidence of rapid Cenozoic uplift of the shoulder escarpment of the Cenozoic West Antarctic Rift System and a speculation on possible climatic forcing,” Geology 19, 315–319 (1991).CrossRef
    64.M. Berberian, Contribution to the Seismotectonics of Iran (Geol. Surv. Iran, Tehran, 1976), Pt. 1.
    65.H. Çelik, “The effect of linear coarse-grained slope channel bodies on the orientations of fold developments: a case study from the Middle Eocene–Lower Oligocene Kirkgeçit Formation, Elazig, Eastern Turkey,” Turkish J. Earth Sci. 21, 1–21 (2012).
    66.M. Coltorti and C. D. Ollier, “Geomorphic and tectonic evolution of the Ecuadorian Andes,” Geomorphology 32, 1–19 (2000).CrossRef
    67.B. T. Cronin, A. J. Hartley, H. Celik, A. Hurst, I. Türkmen, and E. Kerey, “Equilibrium profile development in graded deep-water slopes: Eocene, Eastern Turkey,” J. Geol. Soc. (London, U.K.) 157, 943–955 (2000).CrossRef
    68.B. T. Cronin, H. Celik, A. Hurst, and I. Turkmen, “Mud prone entrenched deep-water slope channel complexes from the Eocene of eastern Turkey,” in Submarine Slope Systems: Processes and Products, Vol. 244 of Geol. Soc. London, Spec. Publ. (London, 2005), pp. 155–180.
    69.J. De Grave, M. M. Buslov, and H. Van der Haute, “Distant effects of India–Eurasia convergence and Mesozoic intracontinental deformation in Central Asia: Constraints from apatite fission-track thermochronology,” J. Asian Earth Sci. 29, 188–204 (2007).CrossRef
    70.G. P. Eaton, “Topography and origin of the Southern Rocky Mountains and Alvarado Ridge,” in Continental extensional tectonics, Vol. 28 of Geol. Soc. London, Spec. Pap., Ed. by M. P. Coward, J. F. Dewey, and P. L. Hancock., (London, 1987) pp. 355–369.
    71.K. A. Farley, M. E. Rusmore, and S. W. Bogue, “Post-10 Myr uplift and exhumation of the Northern Coast Mountains, British Columbia,” Geology 29, 99–102 (2001).CrossRef
    72.Y. Fukao, S. Widiyantoro, and M. Obayashi, “Stagnant slabs in the upper and lower mantle transition region,” Rev. Geophys. 39, 291–323 (2001).CrossRef
    73. Geological Map of Iran. Scale 1:1 000 000, 6 sheets (N.I.O.C. Explor. Prod., Tehran, 1975–1976).
    74.J. Golonka, “Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic,” Tectonophysics 381, 235–273 (2004).CrossRef
    75.F. Gomez, M. Khawlie, C. Tabet, A. N. Darkal, K. Khair, M. Barazangi, “Late Cenozoic uplift along the northern Dead Sea transform in Lebanon and Syria,” Earth Planet. Sci. Lett. 241, 913–931 (2006).CrossRef
    76.R. G. Gordon, “The plate tectonic approximation: plate nonrigidity, diffuse plate boundaries, and global plate reconstructions,” Annu. Rev. Earth Planet. Sci 26, 615–642 (1998).CrossRef
    77.S. E. Holingsworth and R. W. R. Rutland, “Studies of Andean Uplift. Part 1. Post-Cretaceous evolution of the San Bartelo area, North Chile,” Geol. J. 6, 49–62 (1968).CrossRef
    78.S. D. Jacobsen, S. Demouchy, J. D. Frost, T. B. Ballaran, and J. Kung, “A systematic study of OH in hydrous wadsleite from polarized FTIR spectroscopy and single-crystal X-ray diffraction: Oxygen sites for hydrogen storage in Earth’s interior,” Am. Mineral. 90, 67–70 (2005).CrossRef
    79.A. Karakhanian, A. Avagyan, M. Avanessyan, M. Elashvili, T. Gogoradze, Z. Javakhishvili, A. Korzhenkov, S. Philip, and E. Vergino “Armenia-to-Georgia trans-boundary fault: An example of international cooperation in the Caucasus,” in AGU Fall Meeting Abstracts, San Francisco, USA, 2012, Abstr. No. S43J-02.
    80.A. S. Karakhanian, V. G. Trifonov, H. Philip, A. Avagyan, Kh. Hessami, F. Jamali, M. S. Bayraktutan, H. Bagdassarian, S. Arakelian, V. Davtian, and A. Adilkhanyan, “Active faulting and natural hazards in Armenia, eastern Turkey and northwestern Iran,” Tectonophysics 380, 189–219 (2004).CrossRef
    81.S. B. Kroonenberg, J. G. M. Bakker, and M. van der Wiel, “Late Cenozoic uplift and paleogeography of the Colombian Andes: Constraints on the development of the high-Andean biota,” Geol. Mijnbouw 69, 279–290 (1990).
    82.K. A. Krylov, S. A. Silantyev, and V. A. Krasheninnikov, “The tectonic structure and evolution of South- Western and Central Cyprus,” in Geological Framework of the Levant, Vol. I: Cyprus and Syria, Ed. by V. A. Krasheninnikov, J. K. Hall, F. Hirsch, Ch. Benjamini, and A. Flexer (Historical Production-Hall, Jerusalem, 2005), pp. 135–164.
    83.I. Lucchita, “Late Cenozoic uplift of the Southwestern Colorado Plateau and adjacent lower Colorado River region,” Tectonophysics 61, 63–95 (1979).CrossRef
    84.S. P. Nitchman, S. J. Caskey, and T. L. Sawyer, “Change in Great Basin tectonics at 3–4 Myr–a hypothesis,” Geol. Soc. Am. Abstr., Cordilleran Sect. 33 (3), 72 (1990).
    85.C. D. Ollier, “Mountain uplift and the Neotectonic period,” Ann. Geophys., Suppl. to Vol. 49. No. 1, 437–450 (2006).
    86.C. D. Ollier and D. Taylor, “Major geomorphic features of the Kosciusko–Bega region,” BMR J. Aust. Geol. Geophys. 10, 357–362 (1988).
    87.T. C. Partridge, “Late Neogene uplift in Eastern and Southern Africa,” in Tectonic Uplift and Climate Change, Ed. by W. F. Ruddiman, (Plenum Press, New York, 1997), pp. 63–86.CrossRef
    88.T. C. Partridge, “Of diamonds, dinosaurs and diastrophism: 150 Myr of landscape evolution in Southern Africa,” S. Afr. J. Geol 101, 167–184 (1998).
    89.G. R. Priest, N. J. M. Woller, G. L. Black, and S. H. Evans, “Overview of the geology of the Central Oregon Cascade Range,” in Geology and Geothermal Resources of the Central Oregon Cascade Range, Vol. 15 of Oregon Dep. Geol. Miner. Ind., Spec. Pap., Ed. by G. R. Priest and B. F. Vogt (1983), pp. 3–28.CrossRef
    90.A. H. F. Robertson, “Mesozoic–Tertiary tectonic evolution of the eastmost Mediterranean area: integration of marine and land evidence,” in Vol. 160 of Proceedings of the Ocean Drilling Program: Scientific Results, Ed. by A. H. F. Robertson, K. C. Emels, C. Richter, and A. Camerlanghi (College Station, TX, 1998), pp. 97–138.
    91.A. Robertson, Ü. C. Unlügenç, N. Inan, and K. Tasli, “The Misis-Andirin Complex: A Mid-Tertiary melange related to late-stage subduction of the Southern Neotethys in S Turkey,” J. Asian Earth Sci. 22, 413–453 (2004).CrossRef
    92.F. Saroglu, “Age and offset of the North Anatolian fault,” Middle East Tech. Univ. J. Pure Appl. Sci. 21, 65–79 (1988).
    93.S. A. Silantyev, M. V. Portnyagin, B. A. Basylev, N. Yu. Bragin, K. G. Koleda, K. A. Krylov, and L. G. Bragina, “The Troodos ophiolite complex (structural para-autochton). Igneous, metamorphic and sedimentary rocks of the Mamonia (structural allochthon),” in Geological Framework of the Levant, Vol. I: Cyprus and Syria, Ed. by V. A. Krasheninnikov, J. K. Hall, F. Hirsch, Ch. Benjamini, and A. Flexer (Historical Production-Hall, Jerusalem, 2005), pp. 7–100.
    94.J. R. Smyth, “A crystallographic model for hydrous wadsleyte: An ocean in the Earth’s interior?,” Am. Mineral. 79, 1021–1025 (1994).
    95.J. S. Tchalenko and J. Braud, “Seismicity and structure of the Zagros (Iran): The main recent fault between 33° and 35° N,” Philos. Trans. R. Soc. London. 277 (1262), 1–25 (1974).CrossRef
    96.W. D. Thornbury, Regional Geomorphology of the United States (Wiley, New York, 1965).
    97.V. G. Trifonov, D. M. Bachmanov, A. N. Simakova, Ya. I. Trikhunkov, O. Ali, A. S. Tesakov, E. V. Belyaeva, V. P. Lyubin, R. V. Veselovsky, A.-M. Al-Kafri, “Dating and correlation of the Quaternary fluvial terraces in Syria, applied to tectonic deformation in the region,” Quat. Int. 328–329, 74–93 (2014).CrossRef
    98.V. G. Trifonov, A. E. Dodonov, E. V. Sharkov, D. I. Golovin, I. V. Chernyshev, V. A. Lebedev, T. P. Ivanova, D. M. Bachmanov, M. Rukieh, O. Ammar, H. Minini, A.-M. Al Kafri, and O. Ali, “New data on the Late Cenozoic basaltic volcanism in Syria, applied to its origin,” J. Volcanol. Geotherm. Res. 199, 177–192 (2011).CrossRef
    99.V. G. Trifonov, V. P. Lyubin, E. V. Belyaeva, V. A. Lebedev, Ya. I. Trikhunkov, A. S. Tesakov, A. N. Simakova, R. V. Veselovsky, A. V. Latyshev, S. L. Presnyakov, T. P. Ivanova, D. V. Ozhereliev, D. M. Bachmanov, S. E. Artyushkov, and S. M. Lyapunov, “Stratigraphic and tectonic settings of Early Paleolithic of North-West Armenia,” Quat. Int. (2015) (in press). doi 10.1016/j.quaint.2015.08.019
    100.V. G. Trifonov and S. Yu. Sokolov, “Late Cenozoic tectonic uplift producing mountain building in comparison with mantle structure in the Alpine-Himalayan Belt,” Int. J. Geosci. 5, 497–518 (2014). doi 10.4236/ijg.2014.55047CrossRef
    101.D. E. Trimble, “Cenozoic tectonic history of the Great Plains contrasted with that of the southern Rocky Mountains: A synthesis,” Mt. Geol. 17, 59–69 (1980) 9.
    102.E. H. Walker, “Andean uplift and erosion surfaces near Uncia, Bolivia,” Am. J. Sci. 247, 646–663 (1949).CrossRef
  • 作者单位:V. G. Trifonov (1)

    1. Geological Institute, Russian Academy of Sciences, Pyzhevskii per. 7, Moscow, 119017, Russia
  • 刊物主题:Structural Geology;
  • 出版者:Springer US
  • ISSN:1556-1976
文摘
The spatial, chronological, and genetic relationships of recent (Late Alpine) collisions to mountain building are considered at three levels of scale: (i) in separate zones of the Arabian–Caucasus segment of the Alpine–Himalayan Orogenic Belt, (ii) throughout the central segment of this belt from the Alps to the Himalalayas, and (iii) in Central Asia and other mountain belts of continents. Three stages of mountain building are distinguished at all three levels. The first stage starts with widespread collision and similar plate interactions from the end of the Eocene to the middle Miocene and is expressed in the formation of uplifts, commonly no higher than the moderately elevated level in regions that concentrate deformations of transverse shortening induced by compression. The second short stage, which embraces the Pliocene–Quaternary and occasionally the end of the Miocene, differs in general, though differentiated in the value and intensification of vertical movements, when the height of mountains increases by 2–3 times. Elevations are spread over certain platform territories and even frameworks of rift zones. This is related not so much to the intensity of compression and shortening as to the compositional transformation of the upper mantle and the lower crust, leading to their decompaction. Comparison with the Hercynian and Caledonian orogenic stages shows that the second phase, predetermined by widespread collision, reflects a more important geodynamic event expressed in a change of the global plate interaction system and its deep-seated sources.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700