Model-Based Clustering of Social Vulnerability to Urban Extreme Heat Events
详细信息    查看全文
  • 关键词:Geodemographic classification ; Social vulnerability ; Biophysical vulnerability ; Urban heat exposure ; Gini index
  • 刊名:Lecture Notes in Computer Science
  • 出版年:2016
  • 出版时间:2016
  • 年:2016
  • 卷:9927
  • 期:1
  • 页码:114-129
  • 全文大小:2,988 KB
  • 参考文献:1.Adger, W.N.: Vulnerability. Glob. Environ. Change 16(3), 268–281 (2006)CrossRef
    2.Andrews, J.L., McNicholas, P.D.: tEIGEN: model-based clustering and classification with the multivariate t-distribution, 2015, r package version 2
    3.Brown, M.C.: Using Gini-style indices to evaluate the spatial patterns of health practitioners: theoretical considerations and an application based on alberta data. Soc. Sci. Med. 38(9), 1243–1256 (1994)CrossRef
    4.Buyantuyev, A., Wu, J.: Urban heat islands and landscape heterogeneity: linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landscape Ecol. 25(1), 17–33 (2010)CrossRef
    5.Cutter, S.L., Boruff, B.J., Shirley, W.L.: Social vulnerability to environmental hazards*. Soc. Sci. Q. 84(2), 242–261 (2003)CrossRef
    6.Declet-Barreto, J., Brazel, A.J., Martin, C.A., Chow, W.T., Harlan, S.L.: Creating the park cool Island in an inner-city neighborhood: heat mitigation strategy for Phoenix, AZ. Urban Ecosyst. 16(3), 617–635 (2013)CrossRef
    7.Fraley, C., Raftery, A.E.: Model-based clustering, discriminant analysis, and density estimation. J. Am. Stat. Assoc. 97(458), 611–631 (2002)MathSciNet CrossRef MATH
    8.Gallopín, G.C.: Linkages between vulnerability, resilience, and adaptive capacity. Glob. Environ. Change 16(3), 293–303 (2006)CrossRef
    9.Guhathakurta, S., Gober, P.: The impact of the Phoenix urban heat Island on residential water use. J. Am. Plan. Assoc. 73(3), 317–329 (2007)CrossRef
    10.Harlan, S.L., Brazel, A.J., Prashad, L., Stefanov, W.L., Larsen, L.: Neighborhood microclimates and vulnerability to heat stress. Soc. Sci. Med. 63(11), 2847–2863 (2006)CrossRef
    11.Harlan, S.L., Declet-Barreto, J.H., Stefanov, W.L., Petitti, D.B.: Neighborhood effects on heat deaths: social and environmental predictors of vulnerability in Maricopa County, Arizona. Environ. Health Perspect. (Online) 121(2), 197 (2013)
    12.Jenerette, G.D., Harlan, S.L., Brazel, A., Jones, N., Larsen, L., Stefanov, W.L.: Regional relationships between surface temperature, vegetation, and human settlement in a rapidly urbanizing ecosystem. Landscape Ecol. 22(3), 353–365 (2007)CrossRef
    13.Jenerette, G.D., Harlan, S.L., Stefanov, W.L., Martin, C.A.: Ecosystem services and urban heat riskscape moderation: water, green spaces, and social inequality in Phoenix, USA. Ecol. Appl. 21(7), 2637–2651 (2011)CrossRef
    14.Jesdale, B.M., Morello-Frosch, R., Cushing, L.: The racial/ethnic distribution of heat risk-related land cover in relation to residential segregation. Environ. Health Perspect. (Online) 121(7), 811 (2013)CrossRef
    15.Johnson, D.P., Stanforth, A., Lulla, V., Luber, G.: Developing an applied extreme heat vulnerability index utilizing socioeconomic and environmental data. Appl. Geogr. 35(1), 23–31 (2012)CrossRef
    16.Lam, N.S., Reams, M., Li, K., Li, C., Mata, L.P.: Measuring community resilience to coastal hazards along the Northern Gulf of Mexico. Nat. Hazards Rev. 17(1), 1–12 (2015). Article ID 04015013
    17.Maier, G., Grundstein, A., Jang, W., Li, C., Naeher, L.P., Shepherd, M.: Assessing the performance of a vulnerability index during oppressive heat across Georgia, United States. Weather, Clim. Soc. 6(2), 253–263 (2014)CrossRef
    18.Morrow, B.H.: Identifying and mapping community vulnerability. Disasters 23(1), 1–18 (1999)CrossRef
    19.Nguyen, J.L., Schwartz, J., Dockery, D.W.: The relationship between indoor and outdoor temperature, apparent temperature, relative humidity, and absolute humidity. Indoor Air 24(1), 103–112 (2014)CrossRef
    20.Polsky, C., Neff, R., Yarnal, B.: Building comparable global change vulnerability assessments: the vulnerability scoping diagram. Glob. Environ. Change 17(3), 472–485 (2007)CrossRef
    21.Quinn, A., Tamerius, J.D., Perzanowski, M., Jacobson, J.S., Goldstein, I., Acosta, L., Shaman, J.: Predicting indoor heat exposure risk during extreme heat events. Sci. Total Environ. 490, 686–693 (2014)CrossRef
    22.Reid, C.E., Mann, J.K., Alfasso, R., English, P.B., King, G.C., Lincoln, R.A., Margolis, H.G., Rubado, D.J., Sabato, J.E., West, N.L., et al.: Evaluation of a heat vulnerability index on abnormally hot days: an environmental public health tracking study. Environ. Health Perspect. 120(5), 715 (2012)CrossRef
    23.Reid, C.E., O’Neill, M.S., Gronlund, C.J., Brines, S.J., Brown, D.G., Diez-Roux, A.V., Schwartz, J.: Mapping community determinants of heat vulnerability. Environ. Health Perspect. 117(11), 1730 (2009)
    24.Rosenthal, J.K., Kinney, P.L., Metzger, K.B.: Intra-urban vulnerability to heat-related mortality in New York City, 1997–2006. Health Place 30, 45–60 (2014)CrossRef
    25.Rufat, S.: Spectroscopy of urban vulnerability. Ann. Assoc. Am. Geogr. 103(3), 505–525 (2013)CrossRef
    26.Shiu-Thornton, S., Balabis, J., Senturia, K., Tamayo, A., Oberle, M.: Disaster preparedness for limited english proficient communities: medical interpreters as cultural brokers and gatekeepers. Publ. Health Rep. 122(4), 466–471 (2007)
    27.Smit, B., Wandel, J.: Adaptation, adaptive capacity and vulnerability. Glob. Environ. Change 16(3), 282–292 (2006)CrossRef
    28.Spielman, S.E., Singleton, A.: Studying neighborhoods using uncertain data from the American community survey: a contextual approach. Ann. Assoc. Am. Geogr. 105(5), 1003–1025 (2015)CrossRef
    29.Stone, B., Hess, J.J., Frumkin, H., et al.: Urban form and extreme heat events: are sprawling cities more vulnerable to climate change than compact cities. Environ. Health Perspect. 118(10), 1425–1428 (2010)CrossRef
    30.Turner, B.L., Kasperson, R.E., Matson, P.A., McCarthy, J.J., Corell, R.W., Christensen, L., Eckley, N., Kasperson, J.X., Luers, A., Martello, M.L., et al.: A framework for vulnerability analysis in sustainability science. Proc. Natl. Acad. Sci. 100(14), 8074–8079 (2003)CrossRef
    31.Wisner, B., Blaikie, P., Cannon, T., Davis, I.: At Risk: Natural Hazards, People’s Vulnerability and Disasters. Routledge, Abingdon-on-Thames (2004)
    32.Wolf, T., McGregor, G.: The development of a heat wave vulnerability index for London, United Kingdom. Weather Clim. Extremes 1, 59–68 (2013)CrossRef
    33.Wood, N.J., Jones, J., Spielman, S., Schmidtlein, M.C.: Community clusters of Tsunami vulnerability in the US Pacific Northwest. Proc. Nat. Acad. Sci. 112(17), 5354–5359 (2015)CrossRef
    34.Xu, Y., Dadvand, P., Barrera-Gómez, J., Sartini, C., Marí-Dell’Olmo, M., Borrell, C., Medina-Ramón, M., Sunyer, J., Basagaña, X.: Differences on the effect of heat waves on mortality by sociodemographic and urban landscape characteristics. J. Epidemiol. Commun. Health 67(6), 519–525 (2013)CrossRef
  • 作者单位:Joseph V. Tuccillo (16)
    Barbara P. Buttenfield (16)

    16. Department of Geography, University of Colorado-Boulder, Boulder, USA
  • 丛书名:Geographic Information Science
  • ISBN:978-3-319-45738-3
  • 刊物类别:Computer Science
  • 刊物主题:Artificial Intelligence and Robotics
    Computer Communication Networks
    Software Engineering
    Data Encryption
    Database Management
    Computation by Abstract Devices
    Algorithm Analysis and Problem Complexity
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1611-3349
  • 卷排序:9927
文摘
Geodemographic classification methods are applied to Denver Colorado to develop a typology of social vulnerability to heat exposure. Environmental hazards are known to exhibit biophysical variations (e.g., land cover and housing characteristics) and social variations (e.g., demographic and economic adaptations to heat mitigation). Geodemographic model-based classification permits a more extensive set of input variables, with richer attributions; and it can account for spatial context on variable interactions. Additionally, it generates comparative assessments of environmental stress on multiple demographic groups. The paper emphasizes performance of model-based clustering in geodemographic analysis, describing two stages of classification analysis. In so doing, this research examines ways in which high heat exposure intersects with socioecological variation to drive social vulnerability during extreme heat events. The first stage classifies tract-level variables for social and biophysical stressors. Membership probabilities from the initial (baseline) classification are then input to a second classification that integrates the biophysical and social domains within a membership probability space to form a final place typology. Final place categories are compared to three broad land surface temperature (LST) regimes derived from simple clustering of mean daytime and nighttime land surface temperatures. The results point to several broad considerations for heat mitigation planning that are aligned with extant research on urban heat vulnerability. However, the relative coarseness of the classification structure also reveals a need for further investigation of the internal structure of each class, as well as aggregation effects, in future studies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700