Now you see me, now you don’t: iridescence increases the efficacy of lizard chromatic signals
详细信息    查看全文
  • 作者:Guillem Pérez i de Lanuza ; Enrique Font
  • 关键词:Coloration ; Communication ; Lizard ; Signal efficacy ; Viewer geometry ; Visual modelling
  • 刊名:Naturwissenschaften
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:101
  • 期:10
  • 页码:831-837
  • 全文大小:798 KB
  • 参考文献:1. Andersson S, Prager M (2006) Quantification of coloration. In: Hill GE, McGraw KJ (eds) Bird Coloration, Vol. 1. Mechanisms and Measurements. Harvard University Press, Cambridge, pp 41-9
    2. Bajer K, Molnár O, T?r?k J, Herczeg G (2010) Female European green lizards ( / Lacerta viridis) prefer males with high ultraviolet throat reflectance. Behav Ecol Sociobiol 64:2007-014. doi:10.1007/s00265-010-1012-2 CrossRef
    3. Bajer K, Molnár O, T?r?k J, Herczeg G (2011) Ultraviolet nuptial colour determines fight success in male European green lizards ( / Lacerta viridis). Biol Lett 7:866-68. doi:10.1098/rsbl.2011.0520 CrossRef
    4. Bradbury JW, Vehrencamp SL (2011) Principles of animal communication, 2nd edn. Sinauer Assoc Press, Sunderland
    5. Csermely D, Bonati B, Romani R (2009) Predatory behaviour of common kestrels ( / Falco tinnunculus) in the wild. J Ethol 27:461-65. doi:10.1007/s10164-008-0143-7 CrossRef
    6. Cummings ME, Rosenthal GG, Ryan MJ (2003) A private ultraviolet channel in visual communication. P Roy Soc Lond B 270:897-04. doi:10.1098/rspb.2003.2334 CrossRef
    7. Doucet SM, Meadows MG (2009) Iridescence: a functional perspective. J R Soc Interface 6:S115–S132. doi:10.1098/rsif.2008.0395.focus CrossRef
    8. Eliason CM, Shawkey MD (2011) Decreased hydrophobicity of iridescent feathers: a potential cost of shiny plumage. J Evol Biol 214:2157-163. doi:10.1242/jeb.055822
    9. Endler JA (1991) Variation in the appearance of guppy color patterns to guppies and their predators under different visual conditions. Vision Res 31:587-08 CrossRef
    10. Endler JA, Mielke PW (2005) Comparing entire colour patterns as birds see them. Biol J Linn Soc 86:405-31. doi:10.1111/j.1095-8312.2005.00540.x CrossRef
    11. Endler JA, Théry M (1996) Interacting effects of lek placement, display behavior, ambient light, and color patterns in three neotropical forest-dwelling birds. Am Nat 148:421-52. doi:10.1086/285934 CrossRef
    12. Fleishman LJ (1992) The influence of the sensory system and the environment on motion patterns in the visual displays of anoline lizards and other vertebrates. Am Nat 139:S36–S61 CrossRef
    13. Fleishman LJ, Leal M, Sheehan J (2006) Illumination geometry, detector position and the objective determination of animal signal colours in natural light. Anim Behav 71:463-74. doi:10.1016/j.anbehav.2005.06.005 CrossRef
    14. Fleishman LJ, Loew ER, Whiting MJ (2011) High sensitivity to short wavelengths in a lizard and implications for understanding the evolution of visual systems in lizards. Proc R Soc B 278:2891-899. doi:10.1098/rspb.2011.0118 CrossRef
    15. Font E, Rome LC (1990) Functional morphology of dewlap extension in the lizard / Anolis equestris (Iguanidae). J Morph 206:245-58. doi:10.1002/jmor.1052060210 CrossRef
    16. Font E, Pérez i de Lanuza G, Sampedro C (2009) Ultraviolet reflectance and cryptic sexual dichromatism in the ocellated lizard, / Lacerta ( / Timon) / lepida (Squamata: Lacertidae). Biol J Linn Soc 97:766-80. doi:10.1111/j.1095-8312.2009.01251.x CrossRef
    17. Griggio M, Serra L, Licheri D, Campomori C, Pilastro A (2009) Moult speed affects structural feather ornaments in the blue tit. J Evol Biol 22:782-92. doi:10.1111/j.1420-9101.2009.01700.x CrossRef
    18. Guilford T, Dawkins MS (1991) Receiver psychology and the evolution of animal signals. Anim Behav 42:1-4 CrossRef
    19. Hamilton DG, Whiting MJ, Pryke SR (2013) Fiery frills: carotenoid-based coloration predicts contest success in frillneck lizards. Behav Ecol 24:1138-149. doi:10.1093/beheco/art041 CrossRef
    20. Kemp DJ (2008) Female mating biases for bright ultraviolet iridescence in the butterfly / Eurema hecabe (Pieridae). Behav Ecol 19:1-. doi:10.1093/beheco/arm094 CrossRef
    21. Kemp DJ, Rutowski RL (2007) Condition dependence, quantitative genetics, and the potential signal content of iridescent ultraviolet butterfly coloration. Evolution 61:168-83. doi:10.1111/j.1558-5646.2007.00014.x CrossRef
    22. Kemp DJ, Herberstein ME, Grether GF (2012) Unraveling the true complexity of costly color signaling. Behav Ecol 23:233-36. doi:10.1093/beheco/arr153 CrossRef
    23. Kemp DJ, Jones D, Macedonia JM, Krockenberger AK (2014) Female mating preferences and male signal variation in iridescent / Hypolimnas butterflies. Anim Behav 87:221-29. doi:10.1016/j.anbehav.2013.11.001 CrossRef
    24. Keyser AJ, Hill GE (1999) Condition-dependent variation in the blue-ultraviolet coloration of a structurally based plumage ornament. P Roy Soc Lond B 266:771-77 CrossRef
    25. Land MF (1972) The physics and biology of animal reflectors. Prog Biophys Mol Biol 24:75-06 CrossRef
    26. Lind O, Mitkus M, Olsson P, Kelber A (2013) Ultraviolet sensitivity and colour vision in raptor foraging. J Exp Biol 216:1819-826. doi:10.1242/jeb.082834 CrossRef
    27. Martín J, López P (2009) Multiple color signals may reveal multiple messages in male Schreiber’s green lizards, / Lacerta schreiberi. Behav Ecol Sociobiol 63:1743-755. doi:10.1007/s00265-009-0794-6 CrossRef
    28. M?thger LM, Denton EJ, Marshall NJ, Hanlon RT (2009) Mechanisms and behavioural functions of structural colouration in cephalopods. J R Soc Interface 6:S149–S163. doi:10.1098/rsif.2008.0366.focus CrossRef
    29. Meadows MG, Butler MW, Morehouse NI, Taylor LA, Toomey MB, McGraw KJ, Rutowski RL (2009) Iridescence: views from many angles. J R Soc Interface 6:S107–S113. doi:10.1098/rsif.2009.0013.focus CrossRef
    30. Meadows MG, Morehouse NI, Rutowski RL, Douglas JM, McGraw KJ (2011) Quantifying iridescent coloration in animals: a method for improving repeatability. Behav Ecol Sociobiol 65:1317-327. doi:10.1007/s00265-010-1135-5 CrossRef
    31. Meadows MG, Roudybush TE, McGraw KJ (2012) Dietary protein level affects iridescent coloration in Anna’s hummingbirds, / Calypte anna. J Evol Biol 215:2742-750. doi:10.1242/jeb.069351
    32. Morrison RL (1995) A transmission electron microscopic (TEM) method for determining structural colors reflected by lizard iridophores. Pigm Cell Res 8:28-6 CrossRef
    33. Noh H, Liew SF, Saranathan V, Mochrie SGJ, Prum RO, Dufresne ER, Cao H (2010) How noniridescent colors are generated by quasi-ordered structures of bird feathers. Adv Mater 22:2871-880. doi:10.1002/adma.200903699 CrossRef
    34. ?deen A, H?stad O (2003) Complex distribution of avian color vision systems revealed by sequencing the SWS1 opsin from total DNA. Mol Biol Evol 20:855-61. doi:10.1093/molbev/msg108 CrossRef
    35. Osorio D, Ham AD (2002) Spectral reflectance and directional properties of structural coloration in bird plumage. J Exp Biol 205:2017-027
    36. Pérez i de Lanuza G (2012) Visió en color i coloracions dels lacèrtids. PhD thesis, University of València, València
    37. Pérez i de Lanuza G, Font E (2011) Lizard blues: blue body colouration and ultraviolet polychromatism in lacertids. Rev Esp Herp 24:67-4
    38. Pérez i de Lanuza G, Font E (2014) Ultraviolet vision in lacertid lizards: evidence from retinal structure, eye transmittance, SWS1 visual pigment genes, and behaviour. J Exp Biol 217:1-1. doi:10.1242/jeb.104281 CrossRef
    39. Pérez i de Lanuza G, Font E, Monterde JL (2013) Using visual modelling to study the evolution of lizard colouration: sexual selection drives the evolution of sexual dichromatism in lacertids. J Evol Biol 26:1826-835. doi:10.1111/jeb.12185 CrossRef
    40. Pérez-Mellado V (1998) / Lacerta schreiberi Bedriaga, 1878. In: Salvador A (coord) Reptiles. Fauna Ibérica. Vol. 10. Museo Nacional de Ciencias Naturales, Madrid, pp 218-27
    41. Prum RO (2006) Anatomy, physics, and evolution of avian structural colors. In: Hill GE, McGraw KJ (eds) Bird coloration, vol 1, Mechanisms and measurements. Harvard University Press, Cambridge, pp 295-55
    42. Rohrlich ST, Porter KR (1972) Fine structural observations relating to the production of color by the iridophores of a lizard, / Anolis carolinensis. J Cell Biol 53:38-2 CrossRef
    43. Rowe C (2013) Receiver psychology: a receiver’s perspective. Anim Behav 85:517-23. doi:10.1016/j.anbehav.2013.01.004 CrossRef
    44. Rutowski RL, Nahm AC, Macedonia JM (2010) Iridescent hindwing patches in the Pipevine Swallowtail: differences in dorsal and ventral surfaces relate to signal function and context. Funct Ecol 24:767-75. doi:10.1111/j.1365-2435.2010.01693.x CrossRef
    45. Saranathan V, Forster JD, Noh H, Liew S-F, Mochrie SGJ, Cao H, Dufresne ER, Prum RO (2012) Structure and optical function of amorphous photonic angle X-ray scattering (SAXS) analysis of 230 bird species nanostructures from avian feather barbs: a comparative small. J R Soc Interface 9:2563-580. doi:10.1098/rsif.2012.0191 CrossRef
    46. Shawkey MD, Estes AM, Sieferman L, Hill GE (2005) The anatomical basis of sexual dichromatism in non-iridescent ultraviolet-blue structural coloration of feathers. Biol J Linn Soc 84:259-71. doi:10.1111/j.1095-8312.2005.00428.x CrossRef
    47. Sicsú P, Manica LT, Maia R, Macedo RH (2013) Here comes the sun: multimodal displays are associated with sunlight incidence. Behav Ecol Sociobiol 67:1633-642. doi:10.1007/s00265-013-1574-x CrossRef
    48. Stevens M (2013) Sensory Ecology, Behaviour, and Evolution. Oxford University Press, Oxford CrossRef
    49. Stoddard MC, Prum RO (2008) Evolution of avian plumage color in a tetrahedral color space: a phylogenetic analysis of new world buntings. Am Nat 171:755-76. doi:10.1086/587526 CrossRef
    50. Stuart-Fox DM, Whiting MJ, Moussalli A (2006) Camouflage and colour change: antipredator responses to bird and snake predators across multiple populations in a dwarf chameleon. Biol J Linn Soc 88:437-46. doi:10.1111/j.1095-8312.2006.00631.x CrossRef
    51. Stuart-Fox D, Godinho R, de Bellocq JG, Irwin NR, Brito JC, Moussalli A, ?iroky P, Hugall AF, Baird SJE (2009) Variation in phenotype, parasite load and male competitive ability across a cryptic hybrid zone. PLoS ONE 4:e5677. doi:10.1371/journal.pone.0005677 CrossRef
  • 作者单位:Guillem Pérez i de Lanuza (1) (2)
    Enrique Font (2)

    1. CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Rua Padre Armando Quintas 7, 4485-661, Vair?o, Vila do Conde, Portugal
    2. Ethology Laboratory Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Valencia, Spain
  • ISSN:1432-1904
文摘
The selective forces imposed by primary receivers and unintended eavesdroppers of animal signals often act in opposite directions, constraining the development of conspicuous coloration. Because iridescent colours change their chromatic properties with viewer angle, iridescence offers a potential mechanism to relax this trade-off when the relevant observers involved in the evolution of signal design adopt different viewer geometries. We used reflectance spectrophotometry and visual modelling to test if the striking blue head coloration of males of the lizard Lacerta schreibeiri (1) is iridescent and (2) is more conspicuous when viewed from the perspective of conspecifics than from that of the main predators of adult L. schreibeiri (raptors). We demonstrate that the blue heads of L. schreiberi show angle-dependent changes in their chromatic properties. This variation allows the blue heads to be relatively conspicuous to conspecific viewers located in the same horizontal plane as the sender, while simultaneously being relatively cryptic to birds that see it from above. This study is the first to suggest the use of angle-dependent chromatic signals in lizards, and provides the first evidence of the adaptive function of iridescent coloration based on its detectability to different observers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700