In planta production of ELPylated spidroin-based proteins results in non-cytotoxic biopolymers
详细信息    查看全文
  • 作者:Valeska Hauptmann (1)
    Matthias Menzel (2)
    Nicola Weichert (1)
    Kerstin Reimers (3)
    Uwe Spohn (2)
    Udo Conrad (1)

    1. Leibniz Institute of Plant Genetics and Crop Plant Research
    ; Corrensstrasse 3 ; 06466 ; Stadt Seeland ; OT Gatersleben ; Germany
    2. Fraunhofer Institute for Mechanics of Materials
    ; Walter-H眉lse-Strasse 1 ; 06120 ; Halle/Saale ; Germany
    3. Department of Plastic
    ; Hand and Reconstructive Surgery ; Hannover Medical School ; Podbielskistr. 380 ; 30659 ; Hannover ; Germany
  • 关键词:Spider silk ; Immunogenicity ; Synthetic spidroin ; Biomaterial ; Biocompatibility ; Atomic force microscopy
  • 刊名:BMC Biotechnology
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:15
  • 期:1
  • 全文大小:2,530 KB
  • 参考文献:1. Annabi, N, Mithieux, SM, Camci-Unal, G, Dokmeci, MR, Weiss, AS, Khademhosseini, A (2013) Elastomeric Recombinant Protein-based Biomaterials. Biochem Eng J 77: pp. 110-8 CrossRef
    2. Floss, DM, Schallau, K, Rose-John, S, Conrad, U, Scheller, J (2010) Elastin-like polypeptides revolutionize recombinant protein expression and their biomedical application. Trends Biotechnol 28: pp. 37-45 CrossRef
    3. Floss, DM, Conrad, U, Rose-John, S, Scheller, J ELP fusion technology for biopharmaceuticals. In: Schmidt, SR eds. (2013) Fusion protein technologies for biopharmaceuticals: Applications and challenges. Wiley Blackwell, Hoboken, NJ, pp. 211-26 CrossRef
    4. Gerritsen VB. The tiptoe of an airbus. In: Protein Spotlight / . Swiss Prot. 2002. http://web.expasy.org/spotlight/back_issues/024. Accessed 8 Aug 2013.
    5. Radtke, C, Allmeling, C, Waldmann, KH, Reimers, K, Thies, K, Schenk, HC (2011) Spider silk constructs enhance axonal regeneration and remyelination in long nerve defects in sheep. PLoS One 6: pp. e16990 CrossRef
    6. Wendt, H, Hillmer, A, Reimers, K, Kuhbier, JW, Schafer-Nolte, F, Allmeling, C (2011) Artificial skin鈥揷ulturing of different skin cell lines for generating an artificial skin substitute on cross-weaved spider silk fibres. PLoS One 6: pp. e21833 CrossRef
    7. Hinman, MB, Jones, JA, Lewis, RV (2000) Synthetic spider silk: a modular fiber. Trends Biotechnol 18: pp. 374-9 CrossRef
    8. Sponner, A, Schlott, B, Vollrath, F, Unger, E, Grosse, F, Weisshart, K (2005) Characterization of the protein components of Nephila clavipes dragline silk. Biochemistry 44: pp. 4727-36 CrossRef
    9. Xu, M, Lewis, RV (1990) Structure of a protein superfiber: spider dragline silk. Proc Natl Acad Sci U S A 87: pp. 7120-4 CrossRef
    10. Lewis, RV (2006) Spider silk: ancient ideas for new biomaterials. Chem Rev 106: pp. 3762-74 CrossRef
    11. Simmons, AH, Michal, CA, Jelinski, LW (1996) Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science 271: pp. 84-7 CrossRef
    12. Hayashi, CY, Shipley, NH, Lewis, RV (1999) Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. Int J Biol Macromol 24: pp. 271-5 CrossRef
    13. Ayoub, NA, Garb, JE, Tinghitella, RM, Collin, MA, Hayashi, CY (2007) Blueprint for a high-performance biomaterial: full-length spider dragline silk genes. PLoS One 2: pp. e514 CrossRef
    14. Arcidiacono, S, Mello, C, Kaplan, D, Cheley, S, Bayley, H (1998) Purification and characterization of recombinant spider silk expressed in Escherichia coli. Appl Microbiol Biotechnol 49: pp. 31-8 CrossRef
    15. Huemmerich, D, Helsen, CW, Quedzuweit, S, Oschmann, J, Rudolph, R, Scheibel, T (2004) Primary structure elements of spider dragline silks and their contribution to protein solubility. Biochemistry 43: pp. 13604-12 CrossRef
    16. Dams-Kozlowska, H, Majer, A, Tomasiewicz, P, Lozinska, J, Kaplan, DL, Mackiewicz, A (2012) Purification and cytotoxicity of tag-free bioengineered spider silk proteins. J Biomed Mater Res Part A 101: pp. 456-64
    17. Winkler, S, Szela, S, Avtges, P, Valluzzi, R, Kirschner, DA, Kaplan, D (1999) Designing recombinant spider silk proteins to control assembly. Int J Biol Macromol 24: pp. 265-70 CrossRef
    18. Fahnestock, SR, Irwin, SL (1997) Synthetic spider dragline silk proteins and their production in Escherichia coli. Appl Microbiol Biotechnol 47: pp. 23-32 CrossRef
    19. Chung, H, Kim, TY, Lee, SY (2012) Recent advances in production of recombinant spider silk proteins. Curr Opin Biotech 23: pp. 957-64 CrossRef
    20. Xia, XX, Qian, ZG, Ki, CS, Park, YH, Kaplan, DL, Lee, SY (2010) Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proc Natl Acad Sci U S A 107: pp. 14059-63 CrossRef
    21. Bogush, VG, Sokolova, OS, Davydova, LI, Klinov, DV, Sidoruk, KV, Esipova, NG (2009) A novel model system for design of biomaterials based on recombinant analogs of spider silk proteins. J Neuroimmune Pharmacol 4: pp. 17-27 CrossRef
    22. Scheller, J, Guhrs, KH, Grosse, F, Conrad, U (2001) Production of spider silk proteins in tobacco and potato. Nat Biotechnol 19: pp. 573-7 CrossRef
    23. Menassa, R, Zhu, H, Karatzas, CN, Lazaris, A, Richman, A, Brandle, J (2004) Spider dragline silk proteins in transgenic tobacco leaves: accumulation and field production. Plant Biotechnol J 2: pp. 431-8 CrossRef
    24. Wen, H, Lan, X, Zhang, Y, Zhao, T, Wang, Y, Kajiura, Z (2010) Transgenic silkworms (Bombyx mori) produce recombinant spider dragline silk in cocoons. Mol Biol Rep 37: pp. 1815-21 CrossRef
    25. Teule, F, Miao, YG, Sohn, BH, Kim, YS, Hull, JJ, Fraser, MJ (2012) Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties. Proc Natl Acad Sci U S A 109: pp. 923-8 CrossRef
    26. Scheller, J, Henggeler, D, Viviani, A, Conrad, U (2004) Purification of spider silk-elastin from transgenic plants and application for human chondrocyte proliferation. Transgenic Res 13: pp. 51-7 CrossRef
    27. Weichert, N, Hauptmann, V, Menzel, M, Schallau, K, Gunkel, P, Hertel, TC (2014) Transglutamination allows production and characterization of native-sized ELPylated spider silk proteins from transgenic plants. Plant Biotechnol J 12: pp. 265-75 CrossRef
    28. Mackay, JA, Chilkoti, A (2008) Temperature sensitive peptides: engineering hyperthermia-directed therapeutics. Int J Hyperthermia 24: pp. 483-95 CrossRef
    29. Baumlein, H, Wobus, U, Pustell, J, Kafatos, FC (1986) The legumin gene family - structure of a B type gene of Vicia faba and a possible legumin gene specific regulatory element. Nucleic Acids Res 14: pp. 2707-20 CrossRef
    30. Fiedler, U, Phillips, J, Artsaenko, O, Conrad, U (1997) Optimization of scFv antibody production in transgenic plants. Immunotechnology 3: pp. 205-16 CrossRef
    31. Ge, X, Trabbic-Carlson, K, Chilkoti, A, Filipe, CD (2006) Purification of an elastin-like fusion protein by microfiltration. Biotechnol Bioeng 95: pp. 424-32 CrossRef
    32. Floss, DM, Mockey, M, Zanello, G, Brosson, D, Diogon, M, Frutos, R (2010) Expression and immunogenicity of the mycobacterial Ag85B/ESAT-6 antigens produced in transgenic plants by elastin-like peptide fusion strategy. J Biomed Biotechnol 2010: pp. 274346 CrossRef
    33. Meyer, DE, Chilkoti, A (1999) Purification of recombinant proteins by fusion with thermally-responsive polypeptides. Nat Biotechnol 17: pp. 1112-5 CrossRef
    34. Phan, HT, Conrad, U (2011) Membrane-based inverse transition cycling: an improved means for purifying plant-derived recombinant protein-elastin-like polypeptide fusions. Int J Mol Sci 12: pp. 2808-21 CrossRef
    35. Noack, S, Schulze, G (1980) Statistical evaluation of analytical measurements - approximation of the integral limits of the R-distribution, T-distribution, and F-distribution. Fresen Z Anal Chem 304: pp. 250-4 CrossRef
    36. Allmeling, C, Jokuszies, A, Reimers, K, Kall, S, Choi, CY, Brandes, G (2008) Spider silk fibres in artificial nerve constructs promote peripheral nerve regeneration. Cell Prolif 41: pp. 408-20 CrossRef
    37. Conrad, U, Plagmann, I, Malchow, S, Sack, M, Floss, DM, Kruglov, AA (2011) ELPylated anti-human TNF therapeutic single-domain antibodies for prevention of lethal septic shock. Plant Biotechnol J 9: pp. 22-31 CrossRef
    38. Hauptmann, V, Weichert, N, Menzel, M, Knoch, D, Paege, N, Scheller, J (2013) Native-sized spider silk proteins synthesized in planta via intein-based multimerization. Transgenic Res 22: pp. 369-77 CrossRef
    39. Vollrath, F, Barth, P, Basedow, A, Engstrom, W, List, H (2002) Local tolerance to spider silks and protein polymers in vivo. In Vivo 16: pp. 229-34
    40. Widhe, M, Bysell, H, Nystedt, S, Schenning, I, Malmsten, M, Johansson, J (2010) Recombinant spider silk as matrices for cell culture. Biomaterials 31: pp. 9575-85 CrossRef
    41. Agapov, II, Pustovalova, OL, Moisenovich, MM, Bogush, VG, Sokolova, OS, Sevastyanov, VI (2009) Three-dimensional scaffold made from recombinant spider Silk protein for tissue engineering. Dokl Biochem Biophys 426: pp. 127-30 CrossRef
    42. Zeplin, PH, Maksimovikj, NC, Jordan, MC, Nickel, J, Lang, G, Leimer, AH (2014) Spider Silk Coatings as a Bioshield to reduce Periprosthetic Fibrous Capsule Formation. Adv Funct Mater 24: pp. 2658-66 CrossRef
    43. Liu, H, Li, X, Niu, X, Zhou, G, Li, P, Fan, Y (2011) Improved hemocompatibility and endothelialization of vascular grafts by covalent immobilization of sulfated silk fibroin on poly(lactic-co-glycolic acid) scaffolds. Biomacromolecules 12: pp. 2914-24 CrossRef
    44. Korayem, AM, Hauling, T, Lesch, C, Fabbri, M, Lindgren, M, Loseva, O (2007) Evidence for an immune function of lepidopteran silk proteins. Biochem Biophys Res Commun 352: pp. 317-22 CrossRef
    45. Hofer, M, Winter, G, Myschik, J (2012) Recombinant spider silk particles for controlled delivery of protein drugs. Biomaterials 33: pp. 1554-62 CrossRef
    46. Spiess, K, Lammel, A, Scheibel, T (2010) Recombinant spider silk proteins for applications in biomaterials. Macromol Biosci 10: pp. 998-1007 CrossRef
    47. Floss, DM, Sack, M, Stadlmann, J, Rademacher, T, Scheller, J, Stoger, E (2008) Biochemical and functional characterization of anti-HIV antibody-ELP fusion proteins from transgenic plants. Plant Biotechnol J 6: pp. 379-91 CrossRef
    48. Franck, A, Guilley, H, Jonard, G, Richards, K, Hirth, L (1980) Nucleotide sequence of cauliflower mosaic virus DNA. Cell 21: pp. 285-94 CrossRef
    49. Munro, S, Pelham, HR (1987) A C-terminal signal prevents secretion of luminal ER proteins. Cell 48: pp. 899-907 CrossRef
    50. Wandelt, CI, Khan, MR, Craig, S, Schroeder, HE, Spencer, D, Higgins, TJ (1992) Vicilin with carboxy-terminal KDEL is retained in the endoplasmic reticulum and accumulates to high levels in the leaves of transgenic plants. Plant J 2: pp. 181-92
    51. Gahrtz, M, Conrad, U (2009) Immunomodulation of plant function by in vitro selected single-chain Fv intrabodies. Methods Mol Biol 483: pp. 289-312 CrossRef
    52. Deblaere, R, Bytebier, B, Greve, H, Deboeck, F, Schell, J, Montagu, M (1985) Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants. Nucleic Acids Res 13: pp. 4777-88 CrossRef
    53. Horsch, RB, Fry, JE, Hoffmann, NL, Eichholtz, D, Rogers, SG, Fraley, RT (1985) A simple and general method for transferring genes into plants. Science 227: pp. 1229-31 CrossRef
    54. Evan, GI, Lewis, GK, Ramsay, G, Bishop, JM (1985) Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Macromol Biosci 5: pp. 3610-6
    55. Lin, DC, Dimitriadis, EK, Horkay, F (2007) Robust strategies for automated AFM force curve analysis鈥揑. Non-adhesive indentation of soft, inhomogeneous materials. J Biomech Eng 129: pp. 430-40 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Biotechnology
    Life Sciences
    Plant Breeding/Biotechnology
    Stem Cells
    Transgenics
  • 出版者:BioMed Central
  • ISSN:1472-6750
文摘
Background Spider silk is a tear-resistant and elastic biopolymer that has outstanding mechanical properties. Additionally, exiguous immunogenicity is anticipated for spider silks. Therefore, spider silk represents a potential ideal biomaterial for medical applications. All known spider silk proteins, so-called spidroins, reveal a composite nature of silk-specific units, allowing the recombinant production of individual and combined segments. Results In this report, a miniaturized spidroin gene, named VSO1 that contains repetitive motifs of MaSp1 has been synthesized and combined to form multimers of distinct lengths, which were heterologously expressed as elastin-like peptide (ELP) fusion proteins in tobacco. The elastic penetration moduli of layered proteins were analyzed for different spidroin-based biopolymers. Moreover, we present the first immunological analysis of synthetic spidroin-based biopolymers. Characterization of the binding behavior of the sera after immunization by competitive ELISA suggested that the humoral immune response is mainly directed against the fusion partner ELP. In addition, cytocompatibility studies with murine embryonic fibroblasts indicated that recombinant spidroin-based biopolymers, in solution or as coated proteins, are well tolerated. Conclusion The results show that spidroin-based biopolymers can induce humoral immune responses that are dependent on the fusion partner and the overall protein structure. Furthermore, cytocompatibility assays gave no indication of spidroin-derived cytotoxicity, suggesting that recombinant produced biopolymers composed of spider silk-like repetitive elements are suitable for biomedical applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700