A Radial Basis Function Partition of Unity Collocation Method for Convection–Diffusion Equations Arising in Financial Applications
详细信息    查看全文
  • 作者:Ali Safdari-Vaighani ; Alfa Heryudono ; Elisabeth Larsson
  • 关键词:Collocation method ; Meshfree ; Radial basis function ; Partition of unity ; RBF–PUM ; Convection–diffusion equation ; American option ; MSC 65M70 ; MSC 35K15
  • 刊名:Journal of Scientific Computing
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:64
  • 期:2
  • 页码:341-367
  • 全文大小:1,789 KB
  • 参考文献:1.Babu?ka, I., Melenk, J.M.: The partition of unity method. Int. J. Numer. Methods Eng. 40(4), 727-58 (1997). doi:10.-002/-SICI)1097-0207(19970228)40:-<727:-?AID-NME86>3.-.?CO;2-N
    2.Ballestra, L.V., Pacelli, G.: Computing the survival probability density function in jump-diffusion models: a new approach based on radial basis functions. Eng. Anal. Bound. Elem. 35(9), 1075-084 (2011). doi:10.-016/?j.?enganabound.-011.-2.-08 MATH MathSciNet View Article
    3.Ballestra, L.V., Pacelli, G.: A radial basis function approach to compute the first-passage probability density function in two-dimensional jump-diffusion models for financial and other applications. Eng. Anal. Bound. Elem. 36(11), 1546-554 (2012). doi:10.-016/?j.?enganabound.-012.-4.-11 MathSciNet View Article
    4.Ballestra, L.V., Pacelli, G.: Pricing European and American options with two stochastic factors: A highly efficient radial basis function approach. J. Econ. Dyn. Control 37(6), 1142-167 (2013). doi:10.-016/?j.?jedc.-013.-1.-13 MathSciNet View Article
    5.Bates, D.: Jumps and stochastic volatility: exchange rate processes implicit in deutsche mark options. Rev. Financ. Stud. 9(1), 69-07 (1996). doi:10.-093/?rfs/-.-.-9 View Article
    6.Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81(3), 637-54 (1973)MATH View Article
    7.Carr, P., Geman, H., Madan, D.B., Yor, M.: Stochastic volatility for Lévy processes. Math. Financ. 13(3), 345-82 (2003). doi:10.-111/-467-9965.-0020 MATH MathSciNet View Article
    8.Duffie, D.: Dynamic Asset Pricing Theory. Princeton University Press, Princeton (1996)
    9.Durham, G.B., Gallant, A.R.: Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes. J. Bus. Econ. Stat. 20(3), 297-38 (2002). doi:10.-198/-735001022886183-7 MathSciNet View Article
    10.Fasshauer, G., Khaliq, A.Q.M., Voss, D.A.: Using meshfree approximation for multi asset American options. J. Chin. Inst. Eng. 27(4), 563-71 (2004). doi:10.-080/-2533839.-004.-670904
    11.Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB. Interdisciplinary Mathematical Sciences, vol. 6, pp. xviii+500. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2007)
    12.Fichera, G.: Sulle equazioni differenziali lineari ellittico-paraboliche del secondo ordine. Atti Accad. Naz. Lincei. Mem. Cl. Sci. Fis. Mat. Nat. Sez. I. VIII, ser. 5, pp. 3-0 (1956)
    13.Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput. 33(2), 869-92 (2011). doi:10.-137/-9076756X MATH MathSciNet View Article
    14.Fornberg, B., Zuev, J.: The Runge phenomenon and spatially variable shape parameters in RBF interpolation. Comput. Math. Appl. 54(3), 379-98 (2007). doi:10.-016/?j.?camwa.-007.-1.-28 MATH MathSciNet View Article
    15.Franke, R., Nielson, G.: Smooth interpolation of large sets of scattered data. Int. J. Numer. Methods Eng. 15(11), 1691-704 (1980). doi:10.-002/?nme.-620151110 MATH MathSciNet View Article
    16.Halton, J.H.: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer. Math. 2(1), 84-0 (1960). doi:10.-007/?BF01386213 MATH MathSciNet View Article
    17.Hon, Y.C., Mao, X.Z.: A radial basis function method for solving options pricing models. J. Financ. Eng. 8, 31-9 (1999)
    18.In’t Hout, K.J., Foulon, S.: ADI finite difference schemes for option pricing in the Heston model with correlation. Int. J. Numer. Anal. Model. 7(2), 303-20 (2010)
    19.Ito, K., Toivanen, J.: Lagrange multiplier approach with optimized finite difference stencils for pricing American options under stochastic volatility. SIAM J. Sci. Comput. 31(4), 2646-664 (2009). doi:10.-137/-7070574X MATH MathSciNet View Article
    20.Janson, S., Tysk, J.: Feynman–Kac formulas for Black–Scholes-type operators. Bull. Lond. Math. Soc. 38(2), 269-82 (2006). doi:10.-112/?S002460930601819- MATH MathSciNet View Article
    21.Kangro, R., Nicolaides, R.: Far field boundary conditions for Black–Scholes equations. SIAM J. Numer. Anal. 38(4), 1357-368 (2000). doi:10.-137/?S003614299935592- .
    22.Kou, S.G.: A jump-diffusion model for option pricing. Manag. Sci. 48(8), 1086-101 (2002)MATH View Article
    23.Kwok, Y.K.: Mathematical Models of Financial Derivatives, 2nd edn. Springer, Berlin (2008)MATH
    24.Larsson, E., Fornberg, B.: Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions. Comput. Math. Appl. 49(1), 103-30 (2005). doi:10.-016/?j.?camwa.-005.-1.-10 MATH MathSciNet View Article
    25.Larsson, E., Gomes, S., Heryudono, A., Safdari-Vaighani, A.: Radial basis function methods in computational finance. In: Proceedings of the CMMSE 2013, p. 12, Almería, Spain (2013)
    26.Larsson, E., Heryudono, A.: A partition of unity radial basis function collocation method for
  • 作者单位:Ali Safdari-Vaighani (1)
    Alfa Heryudono (2)
    Elisabeth Larsson (3)

    1. Department of Mathematics, Allameh Tabataba’i University, Tehran, Iran
    2. Department of Mathematics, University of Massachusetts Dartmouth, Dartmouth, MA, USA
    3. Department of Information Technology, Uppsala University, Uppsala, Sweden
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Algorithms
    Computational Mathematics and Numerical Analysis
    Applied Mathematics and Computational Methods of Engineering
    Mathematical and Computational Physics
  • 出版者:Springer Netherlands
  • ISSN:1573-7691
文摘
Meshfree methods based on radial basis function (RBF) approximation are of interest for numerical solution of partial differential equations (PDEs) because they are flexible with respect to geometry, they can provide high order convergence, they allow for local refinement, and they are easy to implement in higher dimensions. For global RBF methods, one of the major disadvantages is the computational cost associated with the dense linear systems that arise. Therefore, research is currently directed towards localized RBF approximations such as the RBF partition of unity collocation method (RBF–PUM) proposed here. The objective of this paper is to establish that RBF–PUM is viable for parabolic PDEs of convection–diffusion type. The stability and accuracy of RBF–PUM is investigated partly theoretically and partly numerically. Numerical experiments show that high-order algebraic convergence can be achieved for convection–diffusion problems. Numerical comparisons with finite difference and pseudospectral methods have been performed, showing that RBF–PUM is competitive with respect to accuracy, and in some cases also with respect to computational time. As an application, RBF–PUM is employed for a two-dimensional American option pricing problem. It is shown that using a node layout that captures the solution features improves the accuracy significantly compared with a uniform node distribution.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700