Thermodynamic Characterization of Temporal Networks
详细信息    查看全文
  • 关键词:Complex networks ; Quantum thermodynamics ; Graphs
  • 刊名:Lecture Notes in Computer Science
  • 出版年:2016
  • 出版时间:2016
  • 年:2016
  • 卷:10029
  • 期:1
  • 页码:49-59
  • 全文大小:586 KB
  • 参考文献:1.Arbeitman, M.N., Furlong, E.E., Imam, F., Johnson, E., Null, B.H., Baker, B.S., Krasnow, M.A., Scott, M.P., Davis, R.W., White, K.P.: Gene expression during the life cycle of drosophila melanogaster. Science 297(5590), 2270–2275 (2002)CrossRef
    2.Escolano, F., Hancock, E.R., Lozano, M.A.: Heat diffusion: thermodynamic depth complexity of networks. Phys. Rev. E 85(3), 036206 (2012)CrossRef
    3.Estrada, E.: The Structure of Complex Networks: Theory and Applications. OUP, Oxford (2011)CrossRef
    4.Estrada, E.: Introduction to complex networks: structure and dynamics. In: Banasiak, J., Mokhtar-Kharroubi, M. (eds.) Evolutionary Equations with Applications in Natural Sciences. LNM, vol. 2126, pp. 93–131. Springer, Heidelberg (2015). doi:10.​1007/​978-3-319-11322-7_​3
    5.Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58(2), 915 (1998)MathSciNet CrossRef
    6.Huang, K.: Statistical Mechanics. Wiley, New York (1987)MATH
    7.Javarone, M.A., Armano, G.: Quantum-classical transitions in complex networks. J. Stat. Mech.: Theor. Exp. 2013(04), P04019 (2013)
    8.Mikulecky, D.C.: Network thermodynamics and complexity: a transition to relational systems theory. Comput. Chem. 25(4), 369–391 (2001)CrossRef
    9.Newman, M.E.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)MathSciNet CrossRef MATH
    10.Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)CrossRef MATH
    11.Passerini, F., Severini, S.: Quantifying complexity in networks: the Von Neumann entropy. Int. J. Agent Technol. Syst. (IJATS) 1(4), 58–67 (2009)CrossRef
    12.Peron, T.D., Rodrigues, F.A.: Collective behavior in financial markets. EPL (Europhys. Lett.) 96(4), 48004 (2011)CrossRef
    13.Song, L., Kolar, M., Xing, E.P.: Keller: estimating time-varying interactions between genes. Bioinformatics 25(12), i128–i136 (2009)CrossRef
    14.Ye, C., Comin, C.H., Peron, T.K.D., Silva, F.N., Rodrigues, F.A., Costa, L.D.F., Torsello, A., Hancock, E.R.: Thermodynamic characterization of networks using graph polynomials. Phys. Rev. E 92(3), 032810 (2015)CrossRef
    15.Ye, C., Torsello, A., Wilson, R.C., Hancock, E.R.: Thermodynamics of time evolving networks. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015. LNCS, vol. 9069, pp. 315–324. Springer, Heidelberg (2015). doi:10.​1007/​978-3-319-18224-7_​31
  • 作者单位:Giorgia Minello (18)
    Andrea Torsello (18)
    Edwin R. Hancock (19)

    18. DAIS, Università Ca’ Foscari Venezia, Venice, Italy
    19. Department of Computer Science, University of York, York, UK
  • 丛书名:Structural, Syntactic, and Statistical Pattern Recognition
  • ISBN:978-3-319-49055-7
  • 刊物类别:Computer Science
  • 刊物主题:Artificial Intelligence and Robotics
    Computer Communication Networks
    Software Engineering
    Data Encryption
    Database Management
    Computation by Abstract Devices
    Algorithm Analysis and Problem Complexity
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1611-3349
  • 卷排序:10029
文摘
Time-evolving networks have proven to be an efficient and effective means of concisely characterising the behaviour of complex systems over time. However, the analysis of such networks and the identification of the underlying dynamical process has proven to be a challenging problem, particularly trying to model the large-scale properties of graphs. In this paper we present a novel method to characterize the behaviour of the evolving systems based on a thermodynamic framework for graphs. This framework aims at relating the major structural changes in time evolving networks to thermodynamic phase transitions. This is achieved by relating the thermodynamics variables to macroscopic changes in network topology. First, by considering a recent quantum-mechanical characterization of the structure of a network, we derive the network entropy. Then we adopt a Schrödinger picture of the dynamics of the network, in order to obtain a measure of energy exchange through the estimation of a hidden time-varying Hamiltonian from the data. Experimental evaluations on real-world data demonstrate how the estimation of this time-varying energy operator strongly characterizes the different states of time evolving networks.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700