The Errors of Our Ways: Understanding Error Representations in Cerebellar-Dependent Motor Learning
详细信息    查看全文
  • 作者:Laurentiu S. Popa ; Martha L. Streng ; Angela L. Hewitt ; Timothy J. Ebner
  • 关键词:Cerebellum ; Purkinje cells ; Motor learning ; Internal model ; Complex spikes ; Simple spikes
  • 刊名:The Cerebellum
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:15
  • 期:2
  • 页码:93-103
  • 全文大小:606 KB
  • 参考文献:1.Marr D. A theory of cerebellar cortex. J Physiol. 1969;202:437–70.PubMed PubMedCentral CrossRef
    2.Albus JS. A theory of cerebellar function. Math Biosci. 1971;10:25–61.CrossRef
    3.Ito M, Kano M. Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci Lett. 1982;33:253–8.PubMed CrossRef
    4.Todorov E, Jordan MI. Optimal feedback control as a theory of motor coordination. Nat Neurosci. 2002;5:1226–35.PubMed CrossRef
    5.Berniker M, Kording K. Estimating the sources of motor errors for adaptation and generalization. Nat Neurosci. 2008;11:1454–61.PubMed PubMedCentral CrossRef
    6.Shadmehr R, Smith MA, Krakauer JW. Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci. 2010;33:89–108.PubMed CrossRef
    7.Wolpert DM, Ghahramani Z. Computational principles of movement neuroscience. Nat Neurosci. 2000;3(Suppl):1212–7.PubMed CrossRef
    8.Miall RC, Wolpert DM. Forward models for physiological motor control. Neural Netw. 1996;9:1265–79.PubMed CrossRef
    9.Kawato M. Internal models for motor control and trajectory planning. Curr Opin Neurobiol. 1999;9:718–27.PubMed CrossRef
    10.Wolpert DM, Ghahramani Z, Jordan MI. An internal model for sensorimotor integration. Science. 1995;269:1880–2.PubMed CrossRef
    11.Morton SM, Bastian AJ. Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. J Neurosci. 2006;26:9107–16.PubMed CrossRef
    12.Robinson DA. Oculomotor control signals. In: Bachyrita P, Lennerstrand G, editors. Basic mechanisms of ocular motility and their clinical implications. Oxford: Pergamon; 1975. p. 337–74.
    13.Xu-Wilson M, Chen-Harris H, Zee DS, Shadmehr R. Cerebellar contributions to adaptive control of saccades in humans. J Neurosci. 2009;29:12930–9.PubMed PubMedCentral CrossRef
    14.Maschke M, Gomez CM, Ebner TJ, Konczak J. Hereditary cerebellar ataxia progressively impairs force adaptation during goal-directed arm movements. J Neurophysiol. 2004;91:230–8.PubMed CrossRef
    15.Imamizu H, Miyauchi S, Tamada T, et al. Human cerebellar activity reflecting an acquired internal model of a new tool. Nature. 2000;403:192–5.PubMed CrossRef
    16.Diedrichsen J, Hashambhoy Y, Rane T, Shadmehr R. Neural correlates of reach errors. J Neurosci. 2005;25:9919–31.PubMed PubMedCentral CrossRef
    17.Flanagan JR, Wing AM. The role of internal models in motion planning and control: evidence from grip force adjustments during movements of hand-held loads. J Neurosci. 1997;17:1519–28.PubMed
    18.Bell CC, Han V, Sawtell NB. Cerebellum-like structures and their implications for cerebellar function. Annu Rev Neurosci. 2008;31:1–24.PubMed CrossRef
    19.Brooks JX, Cullen KE. The primate cerebellum selectively encodes unexpected self-motion. Curr Biol. 2013;23:947–55.PubMed CrossRef
    20.Wong AL, Shelhamer M. Sensorimotor adaptation error signals are derived from realistic predictions of movement outcomes. J Neurophysiol. 2011;105:1130–40.PubMed PubMedCentral CrossRef
    21.Mazzoni P, Krakauer JW. An implicit plan overrides an explicit strategy during visuomotor adaptation. J Neurosci. 2006;26:3642–5.PubMed CrossRef
    22.Taylor JA, Ivry RB. The role of strategies in motor learning. Ann N Y Acad Sci. 2012;1241:1–12.CrossRef
    23.Izawa J, Criscimagna-Hemminger SE, Shadmehr R. Cerebellar contributions to reach adaptation and learning sensory consequences of action. J Neurosci. 2012;32:4230–9.PubMed PubMedCentral CrossRef
    24.Gaveau V, Prablanc C, Laurent D, Rossetti Y, Priot AE. Visuomotor adaptation needs a validation of prediction error by feedback error. Front Hum Neurosci. 2014;8:880.PubMed PubMedCentral CrossRef
    25.Henriques DYP, Cressman EK. Visuomotor adaptation and proprioceptive recalibration. J Mot Behav. 2012;44:435–44.PubMed CrossRef
    26.Simani MC, McGuire LM, Sabes PN. Visual-shift adaptation is composed of separable sensory and task-dependent effects. J Neurophysiol. 2007;98:2827–41.PubMed PubMedCentral CrossRef
    27.van Beers RJ, Wolpert DM, Haggard P. When feeling is more important than seeing in sensorimotor adaptation. Curr Biol. 2002;12:834–7.PubMed CrossRef
    28.Kawato M. Learning internal models of the motor apparatus. In: Bloedel JR, Ebner TJ, Wise SP, editors. The acquisition of motor behavior in vertebrates. Cambridge: MIT Press; 1996. p. 409–30.
    29.Miles FA, Lisberger SG. The “error” signals subserving adaptive gain control in the primate vestibulo-ocular reflex. Ann N Y Acad Sci. 1981;374:513–25.PubMed CrossRef
    30.Magescas F, Prablanc C. Automatic drive of limb motor plasticity. J Cogn Neurosci. 2006;18:75–83.PubMed CrossRef
    31.Cameron BD, Franks IM, Inglis JT, Chua R. Reach adaptation to explicit vs. implicit target error. Exp Brain Res. 2010;203:367–80.PubMed CrossRef
    32.Izawa J, Shadmehr R. Learning from sensory and reward prediction errors during motor adaptation. PLoS Comput Biol. 2011;7, e1002012.PubMed PubMedCentral CrossRef
    33.Schonberg T, Daw ND, Joel D, O'Doherty JP. Reinforcement learning signals in the human striatum distinguish learners from nonlearners during reward-based decision making. J Neurosci. 2007;27:12860–7.PubMed CrossRef
    34.Redding GM, Wallace B. Adaptive spatial alignment and strategic perceptual-motor control. J Exp Psychol Hum Percept Perform. 1996;22:379–94.PubMed CrossRef
    35.Cressman EK, Henriques DY. Reach adaptation and proprioceptive recalibration following exposure to misaligned sensory input. J Neurophysiol. 2010;103:1888–95.PubMed CrossRef
    36.Held R, Freedman SJ. Plasticity in human sensorimotor control. Science. 1963;142:455–62.PubMed CrossRef
    37.Pasalar S, Roitman AV, Durfee WK, Ebner TJ. Force field effects on cerebellar Purkinje cell discharge with implications for internal models. Nat Neurosci. 2006;9:1404–11.PubMed CrossRef
    38.Bastian AJ. Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol. 2006;16:645–9.PubMed CrossRef
    39.Wolpert DM, Miall RC, Kawato M. Internal models in the cerebellum. Trends Cogn Sci. 1998;2:338–47.PubMed CrossRef
    40.Shadmehr R, Holcomb HH. Neural correlates of motor memory consolidation. Science. 1997;277:821–5.PubMed CrossRef
    41.Kawato M, Kuroda T, Imamizu H, Nakano E, Miyauchi S, Yoshioka T. Internal forward models in the cerebellum: fMRI study on grip force and load force coupling. Prog Brain Res. 2003;142:171–88.PubMed CrossRef
    42.Krakauer JW, Ghilardi MF, Mentis M, et al. Differential cortical and subcortical activations in learning rotations and gains for reaching: a PET study. J Neurophysiol. 2004;91:924–33.PubMed CrossRef
    43.Takagi M, Zee DS, Tamargo RJ. Effects of lesions of the oculomotor cerebellar vermis on eye movements in primate: smooth pursuit. J Neurophysiol. 2000;83:2047–62.PubMed
    44.Golla H, Tziridis K, Haarmeier T, Catz N, Barash S, Thier P. Reduced saccadic resilience and impaired saccadic adaptation due to cerebellar disease. Eur J Neurosci. 2008;27:132–44.PubMed CrossRef
    45.Muller F, Dichgans J. Impairments of precision grip in two patients with acute unilateral cerebellar lesions: a simple parametric test for clinical use. Neuropsychologia. 1994;32:265–9.PubMed CrossRef
    46.Nowak DA, Hermsdorfer J, Rost K, Timmann D, Topka H. Predictive and reactive finger force control during catching in cerebellar degeneration. Cerebellum. 2004;3:227–35.PubMed CrossRef
    47.Smith MA, Shadmehr R. Intact ability to learn internal models of arm dynamics in Huntington’s disease but not cerebellar degeneration. J Neurophysiol. 2005;93:2809–21.PubMed CrossRef
    48.Ito M. Cerebellar learning in the vestibulo-ocular reflex. Trends Cogn Sci. 1998;2:313–21.PubMed CrossRef
    49.Ito M. Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev. 2001;81:1143–95.PubMed
    50.Prsa M, Thier P. The role of the cerebellum in saccadic adaptation as a window into neural mechanisms of motor learning. Eur J Neurosci. 2011;33:2114–28.PubMed CrossRef
    51.Thompson RF, Steinmetz JE. The role of the cerebellum in classical conditioning of discrete behavioral responses. Neuroscience. 2009;162:732–55.PubMed CrossRef
    52.Thier P, Ilg U. The neural basis of smooth-pursuit eye movements. Curr Opin Neurobiol. 2005;15:645–52.PubMed CrossRef
    53.Tseng YW, Diedrichsen J, Krakauer JW, Shadmehr R, Bastian AJ. Sensory prediction errors drive cerebellum-dependent adaptation of reaching. J Neurophysiol. 2007;98:54–62.PubMed CrossRef
    54.Schlerf JE, Ivry RB, Diedrichsen J. Encoding of sensory prediction errors in the human cerebellum. J Neurosci. 2012;32:4913–22.PubMed PubMedCentral CrossRef
    55.Taylor JA, Klemfuss NM, Ivry RB. An explicit strategy prevails when the cerebellum fails to compute movement errors. Cerebellum. 2010;9:580–6.PubMed PubMedCentral CrossRef
    56.Oscarsson O. Functional organization of olivary projection to the cerebellar anterior lobe. In: Courville J, editor. The inferior olivary nucleus: anatomy and physiology. New York: Raven; 1980. p. 279–90.
    57.Gilbert PF, Thach WT. Purkinje cell activity during motor learning. Brain Res. 1977;128:309–28.PubMed CrossRef
    58.Ito M. Mechanisms of motor learning in the cerebellum. Brain Res. 2000;886:237–45.PubMed CrossRef
    59.Stone LS, Lisberger SG. Detection of tracking errors by visual climbing fiber inputs to monkey cerebellar flocculus during pursuit eye movements. Neurosci Lett. 1986;72:163–8.PubMed CrossRef
    60.Kawato M, Gomi H. A computational model of four regions of the cerebellum based on feedback-error learning. Biol Cybern. 1992;68:95–103.PubMed CrossRef
    61.Kitazawa S, Kimura T, Yin PB. Cerebellar complex spikes encode both destinations and errors in arm movements. Nature. 1998;392:494–7.PubMed CrossRef
    62.Ito M. Error detection and representation in the olivo-cerebellar system. Front Neural Circuits. 2013;7:1–8.PubMed PubMedCentral CrossRef
    63.Graf W, Simpson JI, Leonard CS. Spatial organization of visual messages of the rabbit’s cerebellar flocculus. II. Complex and simple spike responses of Purkinje cells. J Neurophysiol. 1988;60:2091–121.PubMed
    64.Kobayashi Y, Kawano K, Takemura A, et al. Temporal firing patterns of Purkinje cells in the cerebellar ventral paraflocculus during ocular following responses in monkeys II. Complex spikes. J Neurophysiol. 1998;80:832–48.PubMed
    65.Barmack NH, Shojaku H. Vestibular and visual climbing fiber signals evoked in the uvula-nodulus of the rabbit cerebellum by natural stimulation. J Neurophysiol. 1995;74:2573–89.PubMed
    66.Stone LS, Lisberger SG. Visual responses of Purkinje cells in the cerebellar flocculus during smooth-pursuit eye movements in monkeys. II. Complex spikes. J Neurophysiol. 1990;63:1262–75.PubMed
    67.Kim JH, Wang JJ, Ebner TJ. Climbing fiber afferent modulation during treadmill locomotion in the cat. J Neurophysiol. 1987;57:787–802.PubMed
    68.Lou JS, Bloedel JR. The responses of simultaneously recorded Purkinje cells to the perturbations of the step cycle in the walking ferret: a study using a new analytical method—the real-time postsynaptic response (RTPR). Brain Res. 1986;365:340–4.PubMed CrossRef
    69.Andersson G, Armstrong DM. Complex spikes in Purkinje cells in the lateral vermis (b zone) of the cat cerebellum during locomotion. J Physiol. 1987;385:107–34.PubMed PubMedCentral CrossRef
    70.Soetedjo R, Fuchs AF. Complex spike activity of Purkinje cells in the oculomotor vermis during behavioral adaptation of monkey saccades. J Neurosci. 2006;26:7741–55.PubMed CrossRef
    71.Soetedjo R, Kojima Y, Fuchs AF. Complex spike activity in the oculomotor vermis of the cerebellum: a vectorial error signal for saccade motor learning? J Neurophysiol. 2008;100:1949–66.PubMed PubMedCentral CrossRef
    72.Marko MK, Haith AM, Harran MD, Shadmehr R. Sensitivity to prediction error in reach adaptation. J Neurophysiol. 2012;108:1752–63.PubMed PubMedCentral CrossRef
    73.Robinson FR, Noto CT, Bevans SE. Effect of visual error size on saccade adaptation in monkey. J Neurophysiol. 2003;90:1235–44.PubMed CrossRef
    74.Wei K, Kording K. Relevance of error: what drives motor adaptation? J Neurophysiol. 2009;101:655–64.PubMed PubMedCentral CrossRef
    75.Miles FA, Lisberger SG. Plasticity in the vestibulo-ocular reflex: a new hypothesis. Annu Rev Neurosci. 1981;4:273–99.PubMed CrossRef
    76.Boyden ES, Raymond JL. Active reversal of motor memories reveals rules governing memory encoding. Neuron. 2003;39:1031–42.PubMed CrossRef
    77.Boyden ES, Katoh A, Raymond JL. Cerebellum-dependent learning: the role of multiple plasticity mechanisms. Annu Rev Neurosci. 2004;27:581–609.PubMed CrossRef
    78.Medina JF, Lisberger SG. Links from complex spikes to local plasticity and motor learning in the cerebellum of awake-behaving monkeys. Nat Neurosci. 2008;11:1185–92.PubMed PubMedCentral CrossRef
    79.Yang Y, Lisberger SG. Purkinje-cell plasticity and cerebellar motor learning are graded by complex-spike duration. Nature. 2014;510:529–32.PubMed PubMedCentral CrossRef
    80.Ojakangas CL, Ebner TJ. Purkinje cell complex and simple spike changes during a voluntary arm movement learning task in the monkey. J Neurophysiol. 1992;68:2222–36.PubMed
    81.Ojakangas CL, Ebner TJ. Purkinje cell complex spike activity during voluntary motor learning: relationship to kinematics. J Neurophysiol. 1994;72:2617–30.PubMed
    82.Rasmussen A, Jirenhed DA, Zucca R, Johansson F, Svensson P, Hesslow G. Number of spikes in climbing fibers determines the direction of cerebellar learning. J Neurosci. 2013;33:13436–40.PubMed CrossRef
    83.De Zeeuw CI, Yeo CH. Time and tide in cerebellar memory formation. Curr Opin Neurobiol. 2005;15:667–74.PubMed CrossRef
    84.Yeo CH, Hardiman MJ, Glickstein M. Classical conditioning of the nictitating membrane response of the rabbit. II. Lesions of the cerebellar cortex. Exp Brain Res. 1985;60:99–113.PubMed CrossRef
    85.Mauk MD, Steinmetz JE, Thompson RF. Classical conditioning using stimulation of the inferior olive as the unconditioned stimulus. Proc Natl Acad Sci U S A. 1986;83:5349–53.PubMed PubMedCentral CrossRef
    86.Welsh JP. Systemic harmaline blocks associative and motor learning by the actions of the inferior olive. Eur J Neurosci. 1998;10:3307–20.PubMed CrossRef
    87.Ghelarducci B, Ito M, Yagi N. Impulse discharges from flocculus Purkinje cells of alert rabbits during visual stimulation combined with horizontal head rotation. Brain Res. 1975;87:66–72.PubMed CrossRef
    88.Ohyama T, Nores WL, Murphy M, Mauk MD. What the cerebellum computes. Trends Neurosci. 2003;26:222–7.PubMed CrossRef
    89.Ebner TJ, Johnson MT, Roitman A, Fu Q. What do complex spikes signal about limb movements? Ann NY Acad Sci. 2002;978:205–18.PubMed CrossRef
    90.Fu QG, Mason CR, Flament D, Coltz JD, Ebner TJ. Movement kinematics encoded in complex spike discharge of primate cerebellar Purkinje cells. NeuroReport. 1997;8:523–9.PubMed CrossRef
    91.Horn KM, van Kan PL, Gibson AR. Reduction of rostral dorsal accessory olive responses during reaching. J Neurophysiol. 1996;76:4140–51.PubMed
    92.Catz N, Dicke PW, Thier P. Cerebellar complex spike firing is suitable to induce as well as to stabilize motor learning. Curr Biol. 2005;15:2179–89.PubMed CrossRef
    93.Dash S, Catz N, Dicke PW, Thier P. Specific vermal complex spike responses build up during the course of smooth-pursuit adaptation, paralleling the decrease of performance error. Exp Brain Res. 2010;205:41–55.PubMed CrossRef
    94.Ebner TJ, Hewitt A, Popa LS. What features of movements are encoded in the discharge of cerebellar neurons during limb movements? Cerebellum. 2011;10:683–93.PubMed PubMedCentral CrossRef
    95.Najafi F, Giovannucci A, Wang SS, Medina JF. Sensory-driven enhancement of calcium signals in individual Purkinje cell dendrites of awake mice. Cell Rep. 2014;6:792–8.PubMed PubMedCentral CrossRef
    96.Najafi F, Giovannucci A, Wang SS, Medina JF. Coding of stimulus strength via analog calcium signals in Purkinje cell dendrites of awake mice. Elife. 2014;3, e03663.PubMed PubMedCentral CrossRef
    97.Welsh JP, Lang EJ, Suglhara I, Llinas R. Dynamic organization of motor control within the olivocerebellar system. Nature. 1995;374:453–7.PubMed CrossRef
    98.Lang EJ. Excitatory afferent modulation of complex spike synchrony. Cerebellum. 2003;2:165–70.
    99.Ozden I, Dombeck DA, Hoogland TM, Tank DW, Wang SS. Widespread state-dependent shifts in cerebellar activity in locomoting mice. PLoS ONE. 2012;7, e42650.PubMed PubMedCentral CrossRef
    100.Sasaki K, Bower JM, Llinas R. Multiple Purkinje cell recording in rodent cerebellar cortex. Eur J Neurosci. 1989;1:572–86.PubMed CrossRef
    101.Lou JS, Bloedel JR. Responses of sagittally aligned Purkinje cells during perturbed locomotion: synchronous activation of climbing fiber inputs. J Neurophysiol. 1992;68:570–80.PubMed
    102.Jacobson GA, Lev I, Yarom Y, Cohen D. Invariant phase structure of olivo-cerebellar oscillations and its putative role in temporal pattern generation. Proc Natl Acad Sci U S A. 2009;106:3579–84.PubMed PubMedCentral CrossRef
    103.Schweighofer N, Doya K, Fukai H, Chiron JV, Furukawa T, Kawato M. Chaos may enhance information transmission in the inferior olive. Proc Natl Acad Sci U S A. 2004;101:4655–60.PubMed PubMedCentral CrossRef
    104.Kimpo RR, Rinaldi JM, Kim CK, Payne HL, Raymond JL. Gating of neural error signals during motor learning. Elife. 2014;3, e02076.PubMed PubMedCentral CrossRef
    105.Nguyen-Vu TD, Kimpo RR, Rinaldi JM, et al. Cerebellar Purkinje cell activity drives motor learning. Nat Neurosci. 2013;16:1734–6.PubMed PubMedCentral CrossRef
    106.Guo CC, Ke MC, Raymond JL. Cerebellar encoding of multiple candidate error cues in the service of motor learning. J Neurosci. 2014;34:9880–90.PubMed PubMedCentral CrossRef
    107.Ke MC, Guo CC, Raymond JL. Elimination of climbing fiber instructive signals during motor learning. Nat Neurosci. 2009;12:1171–9.PubMed CrossRef
    108.Shin SL, Zhao GQ, Raymond JL. Signals and learning rules guiding oculomotor plasticity. J Neurosci. 2014;34:10635–44.PubMed PubMedCentral CrossRef
    109.Greger B, Norris S. Simple spike firing in the posterior lateral cerebellar cortex of Macaque Mulatta was correlated with success-failure during a visually guided reaching task. Exp Brain Res. 2005;167:660–5.PubMed CrossRef
    110.Roitman AV, Pasalar S, Ebner TJ. Single trial coupling of Purkinje cell activity to speed and error signals during circular manual tracking. Exp Brain Res. 2009;192:241–51.PubMed PubMedCentral CrossRef
    111.Kahlon M, Lisberger SG. Changes in the responses of Purkinje cells in the floccular complex of monkeys after motor learning in smooth pursuit eye movements. J Neurophysiol. 2000;84:2945–60.PubMed PubMedCentral
    112.Hewitt A, Popa LS, Pasalar S, Hendrix CM, Ebner TJ. Representation of limb kinematics in Purkinje cell simple spike discharge is conserved across multiple tasks. J Neurophysiol. 2011;106:2232–47.PubMed PubMedCentral CrossRef
    113.Popa LS, Hewitt AL, Ebner TJ. Predictive and feedback performance errors are signaled in the simple spike discharge of individual Purkinje cells. J Neurosci. 2012;32:15345–58.PubMed PubMedCentral CrossRef
    114.Paninski L, Fellows MR, Hatsopoulos NG, Donoghue JP. Spatiotemporal tuning of motor cortical neurons for hand position and velocity. J Neurophysiol. 2004;91:515–32.PubMed CrossRef
    115.Popa LS, Hewitt AL, Ebner TJ. The cerebellum for jocks and nerds alike. Front Syst Neurosci. 2014;8:1–13.CrossRef
    116.Crowe DA, Goodwin SJ, Blackman RK, et al. Prefrontal neurons transmit signals to parietal neurons that reflect executive control of cognition. Nat Neurosci. 2013;16:1484–91.PubMed CrossRef
    117.Wallman J, Fuchs AF. Saccadic gain modification: visual error drives motor adaptation. J Neurophysiol. 1998;80:2405–16.PubMed
    118.Noto CT, Robinson FR. Visual error is the stimulus for saccade gain adaptation. Brain Res Cogn Brain Res. 2001;12:301–5.PubMed CrossRef
    119.Nezafat R, Shadmehr R, Holcomb HH. Long-term adaptation to dynamics of reaching movements: a PET study. Exp Brain Res. 2001;140:66–76.PubMed CrossRef
    120.Balsters JH, Ramnani N. Cerebellar plasticity and the automation of first-order rules. J Neurosci. 2011;31:2305–12.PubMed CrossRef
    121.Ploghaus A, Tracey I, Clare S, Gati JS, Rawlins JN, Matthews PM. Learning about pain: the neural substrate of the prediction error for aversive events. Proc Natl Acad Sci U S A. 2000;97:9281–6.PubMed PubMedCentral CrossRef
    122.Meyer-Lohmann J, Hore J, Brooks VB. Cerebellar participation in generation of prompt arm movements. J Neurophysiol. 1977;40:1038–50.PubMed
    123.Lisberger SG, Fuchs AF. Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. I. Purkinje cell activity during visually guided horizontal smooth-pursuit eye movements and passive head rotation. J Neurophysiol. 1978;41:733–63.PubMed
    124.Jirenhed DA, Bengtsson F, Hesslow G. Acquisition, extinction, and reacquisition of a cerebellar cortical memory trace. J Neurosci. 2007;27:2493–502.PubMed CrossRef
    125.Catz N, Dicke PW, Thier P. Cerebellar-dependent motor learning is based on pruning a Purkinje cell population response. Proc Natl Acad Sci U S A. 2008;105:7309–14.PubMed PubMedCentral CrossRef
    126.Medina JF, Lisberger SG. Encoding and decoding of learned smooth pursuit eye movements in the floccular complex of the monkey cerebellum. J Neurophysiol. 2009;102:2039–54.PubMed PubMedCentral CrossRef
    127.Dash S, Dicke PW, Thier P. A vermal Purkinje cell simple spike population response encodes the changes in eye movement kinematics due to smooth pursuit adaptation. Front Syst Neurosci. 2013;7:3.PubMed PubMedCentral
    128.Hewitt AL, Popa LS, Ebner TJ. Changes in Purkinje cell simple spike encoding of reach kinematics during adaptation to a mechanical perturbation. J Neurosci. 2015;35:1106–24.PubMed PubMedCentral CrossRef
    129.Dugas C, Smith AM. Responses of cerebellar Purkinje cells to slip of a hand-held object. J Neurophysiol. 1992;67:483–95.PubMed
    130.Nowak DA, Topka H, Timmann D, Boecker H, Hermsdorfer J. The role of the cerebellum for predictive control of grasping. Cerebellum. 2007;6:7–17.PubMed CrossRef
    131.Shadmehr R, Mussa-Ivaldi FA. Adaptive representation of dynamics during learning of a motor task. J Neurosci. 1994;14:3208–24.PubMed
    132.Krakauer JW, Pine ZM, Ghilardi MF, Ghez C. Learning of visuomotor transformations for vectorial planning of reaching trajectories. J Neurosci. 2000;20:8916–24.PubMed
    133.Scheidt RA, Reinkensmeyer DJ, Conditt MA, Rymer WZ, Mussa-Ivaldi FA. Persistence of motor adaptation during constrained, multi-joint, arm movements. J Neurophysiol. 2000;84:853–62.PubMed
    134.Richter S, Maschke M, Timmann D, et al. Adaptive motor behavior of cerebellar patients during exposure to unfamiliar external forces. J Mot Behav. 2004;36:28–38.PubMed CrossRef
    135.Kojima Y, Soetedjo R, Fuchs AF. Changes in simple spike activity of some Purkinje cells in the oculomotor vermis during saccade adaptation are appropriate to participate in motor learning. J Neurosci. 2010;30:3715–27.PubMed PubMedCentral CrossRef
    136.Miles FA, Braitman DJ, Dow BM. Long-term adaptive changes in primate vestibuloocular reflex. IV. Electrophysiological observations in flocculus of adapted monkeys. J Neurophysiol. 1980;43:1477–93.PubMed
    137.Raymond JL, Lisberger SG. Multiple subclasses of Purkinje cells in the primate floccular complex provide similar signals to guide learning in the vestibulo-ocular reflex. Learn Mem. 1997;3:503–18.PubMed CrossRef
    138.Koekkoek SK, Hulscher HC, Dortland BR, et al. Cerebellar LTD and learning-dependent timing of conditioned eyelid responses. Science. 2003;301:1736–9.PubMed CrossRef
    139.Gao Z, van Beugen BJ, De Zeeuw CI. Distributed synergistic plasticity and cerebellar learning. Nat Rev Neurosci. 2012;13:619–35.PubMed CrossRef
    140.Hansel C, Linden DJ, D'Angelo E. Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nat Neurosci. 2001;4:467–75.PubMed
    141.Jorntell H, Hansel C. Synaptic memories upside down: bidirectional plasticity at cerebellar parallel fiber-Purkinje cell synapses. Neuron. 2006;52:227–38.PubMed CrossRef
    142.Sing GC, Joiner WM, Nanayakkara T, Brayanov JB, Smith MA. Primitives for motor adaptation reflect correlated neural tuning to position and velocity. Neuron. 2009;64:575–89.PubMed CrossRef
    143.Bauswein E, Kolb FP, Leimbeck B, Rubia FJ. Simple and complex spike activity of cerebellar Purkinje cells during active and passive movements in the awake monkey. J Physiol. 1983;339:379–94.PubMed PubMedCentral CrossRef
    144.Mano N, Kanazawa I, Yamamoto K. Complex-spike activity of cerebellar Purkinje cells related to wrist tracking movement in monkey. J Neurophysiol. 1986;56:137–58.PubMed
    145.Roitman AV, Pasalar S, Johnson MT, Ebner TJ. Position, direction of movement, and speed tuning of cerebellar Purkinje cells during circular manual tracking in monkey. J Neurosci. 2005;25:9244–57.PubMed CrossRef
    146.Ramnani N. Automatic and controlled processing in the corticocerebellar system. Prog Brain Res. 2014;210:255–85.PubMed CrossRef
    147.Wolpert DM, Kawato M. Multiple paired forward and inverse models for motor control. Neural Netw. 1998;11:1317–29.PubMed CrossRef
    148.Krakauer JW, Ghilardi MF, Ghez C. Independent learning of internal models for kinematic and dynamic control of reaching. Nat Neurosci. 1999;2:1026–31.PubMed CrossRef
    149.Ebner TJ, Pasalar S. Cerebellum predicts the future motor state. Cerebellum. 2008;7:583–8.PubMed PubMedCentral CrossRef
    150.Cerminara NL, Apps R, Marple-Horvat DE. An internal model of a moving visual target in the lateral cerebellum. J Physiol. 2009;587:429–42.PubMed PubMedCentral CrossRef
    151.Witter L, Canto CB, Hoogland TM, de Gruijl JR, De Zeeuw CI. Strength and timing of motor responses mediated by rebound firing in the cerebellar nuclei after Purkinje cell activation. Front Neural Circuits. 2013;7:133.PubMed PubMedCentral CrossRef
    152.Chaumont J, Guyon N, Valera AM, et al. Clusters of cerebellar Purkinje cells control their afferent climbing fiber discharge. Proc Natl Acad Sci U S A. 2013;110:16223–8.PubMed PubMedCentral CrossRef
    153.Marshall SP, Lang EJ. Local changes in the excitability of the cerebellar cortex produce spatially restricted changes in complex spike synchrony. J Neurosci. 2009;29:14352–62.PubMed PubMedCentral CrossRef
    154.Yang Y, Lisberger SG. Interaction of plasticity and circuit organization during the acquisition of cerebellum-dependent motor learning. Elife. 2013;2, e01574.PubMed PubMedCentral
  • 作者单位:Laurentiu S. Popa (1)
    Martha L. Streng (1)
    Angela L. Hewitt (1)
    Timothy J. Ebner (1)

    1. Department of Neuroscience, University of Minnesota, Lions Research Building, Room 421, 2001 Sixth St. S.E., Minneapolis, MN, 55455, USA
  • 刊物主题:Neurosciences; Neurology; Neurobiology;
  • 出版者:Springer US
  • ISSN:1473-4230
文摘
The cerebellum is essential for error-driven motor learning and is strongly implicated in detecting and correcting for motor errors. Therefore, elucidating how motor errors are represented in the cerebellum is essential in understanding cerebellar function, in general, and its role in motor learning, in particular. This review examines how motor errors are encoded in the cerebellar cortex in the context of a forward internal model that generates predictions about the upcoming movement and drives learning and adaptation. In this framework, sensory prediction errors, defined as the discrepancy between the predicted consequences of motor commands and the sensory feedback, are crucial for both on-line movement control and motor learning. While many studies support the dominant view that motor errors are encoded in the complex spike discharge of Purkinje cells, others have failed to relate complex spike activity with errors. Given these limitations, we review recent findings in the monkey showing that complex spike modulation is not necessarily required for motor learning or for simple spike adaptation. Also, new results demonstrate that the simple spike discharge provides continuous error signals that both lead and lag the actual movements in time, suggesting errors are encoded as both an internal prediction of motor commands and the actual sensory feedback. These dual error representations have opposing effects on simple spike discharge, consistent with the signals needed to generate sensory prediction errors used to update a forward internal model.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700