Protein import complexes in the mitochondrial outer membrane of Amoebozoa representatives
详细信息    查看全文
  • 作者:Dorota Buczek ; Małgorzata Wojtkowska ; Yutaka Suzuki ; Seiji Sonobe…
  • 关键词:Amoebozoa ; Protein import into mitochondria ; Transcriptome analysis ; TOM complex ; TOB/SAM complex ; ERMES complex
  • 刊名:BMC Genomics
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:17
  • 期:1
  • 全文大小:3,709 KB
  • 参考文献:1.Dolezal P, Likic V, Tachezy J, Lithgow T. Evolution of the molecular machines for protein import into mitochondria. Science. 2006;313(5785):314–8.CrossRef PubMed
    2.Embley TM, Martin W. Eukaryotic evolution, changes and challenges. Nature. 2006;440(7084):623–30.CrossRef PubMed
    3.Schmidt O, Pfanner N, Meisinger C. Mitochondrial protein import: from proteomics to functional mechanisms. Nat Rev Mol Cell Biol. 2010;11(9):655–67.CrossRef PubMed
    4.Neupert W, Herrmann JM. Translocation of proteins into mitochondria. Annu Rev Biochem. 2007;76:723–49.CrossRef PubMed
    5.Chacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N. Importing mitochondrial proteins: machineries and mechanisms. Cell. 2009;138(4):628–44.PubMedCentral CrossRef PubMed
    6.Endo T, Yamano K. Transport of proteins across or into the mitochondrial outer membrane. Biochim Biophys Acta. 2010;1803(6):706–14.CrossRef PubMed
    7.Dukanovic J, Rapaport D. Multiple pathways in the integration of proteins into the mitochondrial outer membrane. Biochim Biophys Acta. 2011;1808(3):971–80.CrossRef PubMed
    8.Becker T, Bottinger L, Pfanner N. Mitochondrial protein import: from transport pathways to an integrated network. Trends Biochem Sci. 2012;37(3):85–91.CrossRef PubMed
    9.Neupert W. A perspective on transport of proteins into mitochondria: a myriad of open questions. J Mol Biol. 2015;427(6 Pt A):1135–58.CrossRef PubMed
    10.Kornmann B, Walter P. ERMES-mediated ER-mitochondria contacts: molecular hubs for the regulation of mitochondrial biology. J Cell Sci. 2010;123(Pt 9):1389–93.PubMedCentral CrossRef PubMed
    11.Michel AH, Kornmann B. The ERMES complex and ER-mitochondria connections. Biochem Soc Trans. 2012;40(2):445–50.CrossRef PubMed
    12.Flinner N, Ellenrieder L, Stiller SB, Becker T, Schleiff E, Mirus O. Mdm10 is an ancient eukaryotic porin co-occurring with the ERMES complex. Biochim Biophys Acta. 2013;1833(12):3314–25.CrossRef PubMed
    13.Wideman JG, Lackey SW, Srayko MA, Norton KA, Nargang FE. Analysis of mutations in Neurospora crassa ERMES components reveals specific functions related to beta-barrel protein assembly and maintenance of mitochondrial morphology. PLoS One. 2013;8(8), e71837.PubMedCentral CrossRef PubMed
    14.Sokol AM, Sztolsztener ME, Wasilewski M, Heinz E, Chacinska A. Mitochondrial protein translocases for survival and wellbeing. FEBS Lett. 2014;588(15):2484–95.CrossRef PubMed
    15.Kornmann B, Currie E, Collins SR, Schuldiner M, Nunnari J, Weissman JS, et al. An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science. 2009;325(5939):477–81.PubMedCentral CrossRef PubMed
    16.Stroud DA, Oeljeklaus S, Wiese S, Bohnert M, Lewandrowski U, Sickmann A, et al. Composition and topology of the endoplasmic reticulum-mitochondria encounter structure. J Mol Biol. 2011;413(4):743–50.CrossRef PubMed
    17.Lithgow T, Schneider A. Evolution of macromolecular import pathways in mitochondria, hydrogenosomes and mitosomes. Philos Trans R Soc Lond Ser B Biol Sci. 2010;365(1541):799–817.CrossRef
    18.Hewitt V, Alcock F, Lithgow T. Minor modifications and major adaptations: the evolution of molecular machines driving mitochondrial protein import. Biochim Biophys Acta. 2011;1808(3):947–54.CrossRef PubMed
    19.Liu Z, Li X, Zhao P, Gui J, Zheng W, Zhang Y. Tracing the evolution of the mitochondrial protein import machinery. Comput Biol Chem. 2011;35(6):336–40.CrossRef PubMed
    20.Pusnik M, Mani J, Schmidt O, Niemann M, Oeljeklaus S, Schnarwiler F, et al. An essential novel component of the noncanonical mitochondrial outer membrane protein import system of trypanosomatids. Mol Biol Cell. 2012;23(17):3420–8.PubMedCentral CrossRef PubMed
    21.Murcha MW, Wang Y, Narsai R, Whelan J. The plant mitochondrial protein import apparatus - the differences make it interesting. Biochim Biophys Acta. 2014;1840(4):1233–45.CrossRef PubMed
    22.Gentle I, Gabriel K, Beech P, Waller R, Lithgow T. The Omp85 family of proteins is essential for outer membrane biogenesis in mitochondria and bacteria. J Cell Biol. 2004;164(1):19–24.PubMedCentral CrossRef PubMed
    23.Zeth K. Structure and evolution of mitochondrial outer membrane proteins of beta-barrel topology. Biochim Biophys Acta. 2010;1797(6–7):1292–9.CrossRef PubMed
    24.Bay DC, Hafez M, Young MJ, Court DA. Phylogenetic and coevolutionary analysis of the beta-barrel protein family comprised of mitochondrial porin (VDAC) and Tom40. Biochim Biophys Acta. 2012;1818(6):1502–19.CrossRef PubMed
    25.Heinz E, Lithgow T. Back to basics: a revealing secondary reduction of the mitochondrial protein import pathway in diverse intracellular parasites. Biochim Biophys Acta. 2013;1833(2):295–303.CrossRef PubMed
    26.Keeling PJ, Burger G, Durnford DG, Lang BF, Lee RW, Pearlman RE, et al. The tree of eukaryotes. Trends Ecol Evol. 2005;20(12):670–6.CrossRef PubMed
    27.Dacks JB, Walker G, Field MC. Implications of the new eukaryotic systematics for parasitologists. Parasitol Int. 2008;57(2):97–104.CrossRef PubMed
    28.Adl SM, Simpson AG, Lane CE, Lukes J, Bass D, Bowser SS, et al. The revised classification of eukaryotes. J Eukaryot Microbiol. 2012;59(5):429–93.PubMedCentral CrossRef PubMed
    29.Smirnov AV, Chao E, Nassonova ES, Cavalier-Smith T. A revised classification of naked lobose amoebae (Amoebozoa: lobosa). Protist. 2011;162(4):545–70.CrossRef PubMed
    30.Fiz-Palacios O, Romeralo M, Ahmadzadeh A, Weststrand S, Ahlberg PE, Baldauf S. Did terrestrial diversification of amoebas (amoebozoa) occur in synchrony with land plants? PLoS One. 2013;8(9), e74374.PubMedCentral CrossRef PubMed
    31.Emanuelsson O, Brunak S, von Heijne G, Nielsen H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc. 2007;2(4):953–71.CrossRef PubMed
    32.Rodriguez-Cousino N, Nargang FE, Baardman R, Neupert W, Lill R, Court DA. An import signal in the cytosolic domain of the Neurospora mitochondrial outer membrane protein TOM22. J Biol Chem. 1998;273(19):11527–32.CrossRef PubMed
    33.Macasev D, Whelan J, Newbigin E, Silva-Filho MC, Mulhern TD, Lithgow T. Tom22', an 8-kDa trans-site receptor in plants and protozoans, is a conserved feature of the TOM complex that appeared early in the evolution of eukaryotes. Mol Biol Evol. 2004;21(8):1557–64.CrossRef PubMed
    34.Makiuchi T, Mi-ichi F, Nakada-Tsukui K, Nozaki T. Novel TPR-containing subunit of TOM complex functions as cytosolic receptor for Entamoeba mitosomal transport. Sci Rep. 2013;3:1129.PubMedCentral CrossRef PubMed
    35.Wojtkowska M, Jakalski M, Pienkowska JR, Stobienia O, Karachitos A, Przytycka TM, et al. Phylogenetic analysis of mitochondrial outer membrane beta-barrel channels. Genome Biol Evol. 2012;4(2):110–25.PubMedCentral CrossRef PubMed
    36.Glockner G, Noegel AA. Comparative genomics in the Amoebozoa clade. Biol Rev Camb Philos Soc. 2013;88(1):215–25.CrossRef PubMed
    37.Song J, Xu Q, Olsen R, Loomis WF, Shaulsky G, Kuspa A, et al. Comparing the Dictyostelium and Entamoeba genomes reveals an ancient split in the Conosa lineage. PLoS Comput Biol. 2005;1(7), e71.PubMedCentral CrossRef PubMed
    38.Likic VA, Dolezal P, Celik N, Dagley M, Lithgow T. Using hidden markov models to discover new protein transport machines. Methods Mol Biol. 2010;619:271–84.CrossRef PubMed
    39.Mi-ichi F, Abu Yousuf M, Nakada-Tsukui K, Nozaki T. Mitosomes in Entamoeba histolytica contain a sulfate activation pathway. Proc Natl Acad Sci U S A. 2009;106(51):21731–6.PubMedCentral CrossRef PubMed
    40.Ackers JP. The diagnostic implications of the separation of Entamoeba histolytica and Entamoeba dispar. J Biosci (Suppl 3). 2002;27:573–8.
    41.Dolezal P, Dagley MJ, Kono M, Wolynec P, Likic VA, Foo JH, et al. The essentials of protein import in the degenerate mitochondrion of Entamoeba histolytica. PLoS Pathog. 2010;6(3), e1000812.PubMedCentral CrossRef PubMed
    42.Eckers E, Cyrklaff M, Simpson L, Deponte M. Mitochondrial protein import pathways are functionally conserved among eukaryotes despite compositional diversity of the import machineries. Biol Chem. 2012;393(6):513–24.CrossRef PubMed
    43.Clarke M, Lohan AJ, Liu B, Lagkouvardos I, Roy S, Zafar N, et al. Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling. Genome Biol. 2013;14(2):R11.PubMedCentral CrossRef PubMed
    44.Mani J, Meisinger C, Schneider A. Peeping at TOMs-Diverse Entry Gates to Mitochondria Provide Insights into the Evolution of Eukaryotes. Mol Biol Evol. 2016;33(2):337-51. Epub 2015.
    45.Cavalier-Smith T. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol. 2002;52(Pt 2):297–354.CrossRef PubMed
    46.Keeling PJ, Palmer JD. Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet. 2008;9(8):605–18.CrossRef PubMed
    47.Deutsch M, Long M. Intron-exon structures of eukaryotic model organisms. Nucleic Acids Res. 1999;27(15):3219–28.PubMedCentral CrossRef PubMed
    48.Siegesmund MA, Hehl AB, van der Giezen M. Mitosomes in trophozoites and cysts of the reptilian parasite Entamoeba invadens. Eukaryotic cell. 2011;10(11):1582–5.PubMedCentral CrossRef PubMed
    49.Neff RJ. Purification, axenic cultivation, and description of a soil amoeba, Acanthamoeba sp. J Protozool. 1957;4:176–82.CrossRef
    50.Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52.PubMedCentral CrossRef PubMed
    51.Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.CrossRef PubMed
    52.Eddy SR. Accelerated Profile HMM Searches. PLoS Comput Biol. 2011;7(10), e1002195.PubMedCentral CrossRef PubMed
    53.Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, et al. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res. 2012;40(Web Server issue):W597–603.PubMedCentral CrossRef PubMed
    54.Kapustin Y, Souvorov A, Tatusova T, Lipman D. Splign: algorithms for computing spliced alignments with identification of paralogs. Biol Direct. 2008;3:20.PubMedCentral CrossRef PubMed
    55.Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC bioinformatics. 2004;5:113.PubMedCentral CrossRef PubMed
    56.Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol. 2008;57(5):758–71.CrossRef PubMed
    57.Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8(10):785–6.CrossRef PubMed
    58.Nei M, Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986;3(5):418–26.PubMed
    59.Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731–9.PubMedCentral CrossRef PubMed
    60.Friz CT. The Biochemical composition of the free-living Amoebae Chaos Chaos, Amoeba dubia and Amoeba proteus. Comp Biochem Physiol. 1967;26:81–90.CrossRef
    61.Parfrey LW, Lahr DJ, Katz LA. The dynamic nature of eukaryotic genomes. Mol Biol Evol. 2008;25(4):787–94.PubMedCentral CrossRef PubMed
  • 作者单位:Dorota Buczek (1) (2)
    Małgorzata Wojtkowska (2)
    Yutaka Suzuki (4)
    Seiji Sonobe (3)
    Yukinori Nishigami (3)
    Monika Antoniewicz (2)
    Hanna Kmita (2)
    Wojciech Makałowski (1)

    1. Institute of Bioinformatics, Faculty of Medicine, University of Muenster, Niels Stensen Strasse 14, 48149, Muenster, Germany
    2. Laboratory of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland
    4. Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
    3. Department of Life Science, Graduate School of Life Science, University of Hyogo, Harima Science Park City, Kobe, Hyogo, 678-1297, Japan
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background An ancestral trait of eukaryotic cells is the presence of mitochondria as an essential element for function and survival. Proper functioning of mitochondria depends on the import of nearly all proteins that is performed by complexes located in both mitochondrial membranes. The complexes have been proposed to contain subunits formed by proteins common to all eukaryotes and additional subunits regarded as lineage specific. Since Amoebozoa is poorly sampled for the complexes we investigated the outer membrane complexes, namely TOM, TOB/SAM and ERMES complexes, using available genome and transcriptome sequences, including transcriptomes assembled by us.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700