Accurate Prediction of Coronary Artery Disease Using Reliable Diagnosis System
详细信息    查看全文
  • 作者:Indrajit Mandal (1) indrajit@cse.sastra.edu
    N. Sairam (1) sairam@cse.sastra.edu
  • 关键词:Coronary artery disease – ; Bayesian network – ; Principal components method – ; Software reliability – ; Quality
  • 刊名:Journal of Medical Systems
  • 出版年:2012
  • 出版时间:October 2012
  • 年:2012
  • 卷:36
  • 期:5
  • 页码:3353-3373
  • 全文大小:1.2 MB
  • 参考文献:1. Zahan, S., A fuzzy approach to computer-assisted myocardial ischemia diagnosis. Artif Intell Med 21(1–3):271–275, 2001.
    2. Mobley, B. A., Schechter, E., Moore, W. E., McKee, P. A., and Eichner, J. E., Predictions of coronary artery stenosis by artificial neural network. Artif Intell Med 18(3):187–203, 2000.
    3. Chesnokov, Y. V., Complexity and spectral analysis of the heart rate variability dynamics for distant prediction of paroxysmal atrial fibrillation with artificial intelligence methods. Artif Intell Med 43(2):151–165, 2008.
    4. Kukar, M., Kononenko, I., and Grošelj, C., Modern parameterization and explanation techniques in diagnostic decision support system: a case study in diagnostics of coronary artery disease. Artif Intell Med 52(2):77–90, 2011.
    5. Haddad, M., Adlassnig, K.-P., and Porenta, G., Feasibility analysis of a case-based reasoning system for automated detection of coronary heart disease from myocardial scintigrams. Artif Intell Med 9(1):61–78, 1997.
    6. Khorsand, A., Graf, S., Sochor, H., Schuster, E., and Porenta, G., Automated assessment of myocardial SPECT perfusion scintigraphy: a comparison of different approaches of case-based reasoning. Artif Intell Med 40(2):103–113, 2007.
    7. Long, W. J., Fraser, H., and Naimi, S., Reasoning requirements for diagnosis of heart disease. Artif Intell Med 10(1):5–24, 1997.
    8. Sacha, J. P., Goodenday, L. S., and Cios, K. J., Bayesian learning for cardiac SPECT image interpretation. Artif Intell Med 26(1–2):109–143, 2002.
    9. Hern谩ndez, A. I., Carrault, G., Mora, F., and Bardou, A., Model-based interpretation of cardiac beats by evolutionary algorithms: signal and model interaction. Artif Intell Med 26(3):211–235, 2002.
    10. Kurgan, L. A., Cios, K. J., Tadeusiewicz, R., Ogiela, M., and Goodenday, L. S., Knowledge discovery approach to automated cardiac SPECT diagnosis. Artif Intell Med 23(2):149–169, 2001.
    11. Augusto, J. C., Temporal reasoning for decision support in medicine. Artif Intell Med 33(1):1–24, 2005.
    12. Dena茂, M. A., Mahfouf, M., and Ross, J. J., A hybrid hierarchical decision support system for cardiac surgical intensive care patients. Part I: physiological modelling and decision support system design. Artif Intell Med 45(1):35–52, 2009.
    13. Cho, S., and Reggia, J. A., Multiple disorder diagnosis with adaptive competitive neural networks. Artif Intell Med 5(6):469–487, 1993.
    14. Chao, P.-K., Wang, C.-L., Chan, H.-L., An intelligent classifier for prognosis of cardiac resynchronization therapy based on speckle-tracking echocardiograms. Artif. Intell. Med., Available online 2 October 2011.
    15. Komorowski, J., and 脴hrn, A., Modelling prognostic power of cardiac tests using rough sets. Artif Intell Med 15(2):167–191, 1999.
    16. Malik, M., Bigger, J. T., Camm, A. J., Kleiger, R. E., Malliani, A., Moss, A. J., and Schwartz, P. J., Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Eur Heart J 17(3):354–381, 1996.
    17. Saul, J. P., Arai, Y., Berger, R. D., Lilly, L. S., Colucci, W. S., and Cohen, R. J., Assessment of autonomic regulation in chronic congestive heart failure by heart rate spectral analysis. Am J Cardiol 61(15):1292–1299, 1988.
    18. Bigger, J. T., Fleiss, J. L., Steinman, R. C., Rolnitzky, L. M., Schneider, W. J., and Stein, P. K., RR variability in healthy, middle-aged persons compared with patients with chronic coronary heart-disease or recent acute myocardial-infarction. Circulation 91(7):1936–1943, 1995.
    19. Casolo, G. C., Stroder, P., Sulla, A., Chelucci, A., Freni, A., and Zerauschek, M., Heart-rate-variability and functional severity of congestive heart- failure secondary to coronary-artery disease. Eur Heart J 16(3):360–367, 1995.
    20. Ponikowski, P., Anker, S. D., Chua, T. P., Szelemej, R., Piepoli, M., Adamopoulos, S., WebbPeploe, K., Harrington, D., Banasiak, W., Wrabec, K., and Coats, A. J. S., Depressed heart rate variability as an independent predictor of death in chronic congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 79(12):1645–1650, 1997.
    21. Aronson, D., and Burger, A. J., Gender-related differences in modulation of heart rate in patients with congestive heart failure. J Cardiovasc Electrophysiol 11(10):1071–1077, 2000.
    22. Lucreziotti, S., Gavazzi, A., Scelsi, L., Inserra, C., Klersy, C., Campana, C., Ghio, S., Vanoli, E., and Tavazzi, L., Five-minute recording of heart rate variability in severe chronic heart failure: correlates with right ventricular function and prognostic implications. Am Heart J 139(6):1088–1095, 2000.
    23. Guzzetti, S., Magatelli, R., Borroni, E., and Mezzetti, S., Heart rate variability in chronic heart failure. Auton Neurosci 90(1–2):102–105, 2001.
    24. Mietus, J. E., Peng, C. K., Henry, I., Goldsmith, R. L., and Goldberger, A. L., The pNNx files: reexamining a widely used heart rate variability measure. Heart 88(4):378–380, 2002.
    25. La Rovere, M. T., Pinna, G. D., Maestri, R., Mortara, A., Capomolla, S., Febo, O., Ferrari, R., Franchini, M., Gnemmi, M., Opasich, C., Riccardi, P. G., Traversi, E., and Cobelli, F., Short-term heart rate variability strongly predicts sudden cardiac death in chronic heart failure patients. Circulation 107(4):565–570, 2003.
    26. Musialik-Lydka, A., Sredniawa, B., and Pasyk, S., Heart rate variability in heart failure. Kardiol Pol 58(1):10–16, 2003.
    27. Moore, R. K. G., Groves, D., Kearney, M. T., Eckberg, D. L., Callahan, T. S., Shell, W. E., Fox, K. A. A., and Nolan, J. F., HRV spectral power and mortality in chronic heart failure (CHF): 5 year results of the UK heart study. Heart 90:A6, 2004.
    28. Arbolishvili, G. N., Mareev, V. Y., Orlova, Y. A., and Belenkov, Y. N., Heart rate variability in chronic heart failure and its role in prognosis of the disease. Kardiologiya 46(12):4–11, 2006.
    29. Kikuya, M., Ohkubo, T., Metoki, H., Asayama, K., Hara, A., Obara, T., Inoue, R., Hoshi, H., Hashimoto, J., Totsune, K., Satoh, H., and Imai, Y., Dayby- day variability of blood pressure and heart rate at home as a novel predictor of prognosis: the Ohasama study. Hypertension 52(6):1045–1050, 2008.
    30. Smilde, T. D. J., van Veldhuisen, D. J., and van den Berg, M. P., Prognostic value of heart rate variability and ventricular arrhythmias during 13-year follow-up in patients with mild to moderate heart failure. Clin Res Cardiol 98(4):233–239, 2009.
    31. Mosterd, A., Hoes, A. W., de Bruyne, M. C., Deckers, J. W., Linker, D. T., Hofman, A., and Grobbee, D. E., Prevalence of heart failure and left ventricular dysfunction in the general population: the Rotterdam Study. Eur Heart J 20(6):447–455, 1999.
    32. Vallejo, M., Marquez, M. F., Borja-Aburto, V. H., Cardenas, M., and Hermosillo, A. G., Age, body mass index, and menstrual cycle influence young women’s heart rate variability—a multivariable analysis. Clin Auton Res 15(4):292–298, 2005.
    33. Bilchick, K. C., and Berger, R. D., Heart rate variability. J Cardiovasc Electrophysiol 17(6):691–694, 2006.
    34. Merz, N. B., Assessment of patients at intermediate cardiac risk. Am J Cardiol 96(Suppl):2J–10J, 2005.
    35. Koji, Y., Tomiyama, H., Ischihashi, H., Nagae, T., Tanaka, N., Takazawa, K., Ishimaru, S., and Yamashima, A., Comparison of ankle-brachial pressure index and pulse wave velocity as markers of the presence of CAD in subjects with a high-risk of atherosclerosic cardiovascular disease. Am J Cardiol 94:868–872, 2004.
    36. Park, Y.-J., Chun, S.-H., Kim, B.-C., Cost-sensitive case-based reasoning using a genetic algorithm: application to medical diagnosis. Artif. Intell. Med. 51(2):133–145, ISSN 0933-3657, February 2011.
    37. Brown, G., Diversity in neural network ensembles. The University of Birmingham, 2004.
    38. Kononenko, I., Simec, E., Robnik-Sikonja, M., Overcoming the myopia of inductive learning algorithms with RELIEFF. Appl. Intell. 7, 1997.
    39. Smirnova, E., Sprinkhuizen-Kuyper, I. G., Nalbantis, I., Erim, B., and Universiteit Rotterdam, Unanimous Voting using Support Vector Machines. IKAT, Universiteit Maastricht.
    40. Seewald, A. K., Dissertation towards understanding stacking studies of a general ensemble learning scheme ausgefuhrt zum Zwecke der Erlangung des akademischen Grades eines Doktors der technischen Naturwissenschaften.
    41. Freund, Y., Schapire, R. E., Experiments with a new boosting algorithm. In: Thirteenth International Conference on Machine Learning, San Francisco, 148–156, 1996.
    42. Webb, G. I., MultiBoosting: a technique for combining boosting and wagging. Mach. Learn. 40(No.2), 2000.
    43. Friedman, J., Hastie, T., and Tibshirani, R., Additive logistic regression: a statistical view of boosting. Ann Stat 38(2):337–374, 2000.
    44. Zheng, S., QBoost: predicting quantiles with boosting for regression and binary classification. Expert. Syst. Appl., July 2011.
    45. Kim, H.-J., Kim, J.-U., and Ra, Y.-G., Boosting naive bayes text classification using uncertainty-based selective sampling. Neurocomputing 67:403–410, 2005.
    46. Wang, G., and Ma, J., Study of corporate credit risk prediction based on integrating boosting and random subspace. Expert Syst Appl 38(11):13871–13878, 2011.
    47. Zhang, C., Cai, Q., and Song, Y., Boosting with pairwise constraints. Neurocomputing 73(4–6):908–919, 2010.
    48. Liu, H., Liu, L., and Zhang, H., Boosting feature selection using information metric for classification. Neurocomputing 73(1–3):295–303, 2009.
    49. Deypir, M., Alizadeh, S., Zoughi, T., and Boostani, R., Boosting a multi-linear classifier with application to visual lip reading. Expert Syst Appl 38(1):941–948, 2011.
    50. Garc铆a-Pedrajas, N., and Ortiz-Boyer, D., Boosting k-nearest neighbor classifier by means of input space projection. Expert Syst Appl 36(7):10570–10582, 2009.
    51. Zheng, J., Cost-sensitive boosting neural networks for software defect prediction. Expert Syst Appl 37(6):4537–4543, 2010.
    52. Kim, Y. S., Boosting and measuring the performance of ensembles for a successful database marketing. Expert Syst Appl 36(2):2161–2176, 2009. Part 1.
    53. Bielza, C., Robles, V., and Larra帽aga, P., Regularized logistic regression without a penalty term: an application to cancer classification with microarray data. Expert Syst Appl 38(5):5110–5118, 2011.
    54. Nie, G., Rowe, W., Zhang, L., Tian, Y., and Shi, Y., Credit card churn forecasting by logistic regression and decision tree. Expert Syst Appl 38(12):15273–15285, 2011.
    55. Rodriguez, J. J., Kuncheva, L. I., and Alonso, C. J., Rotation forest: a new classifier ensemble method. IEEE Trans Pattern Anal Mach Intell 28(10):1619–1630, 2006.
    56. Liu, K.-H., and Huang, D.-S., Cancer classification using rotation forest. Comput Biol Med 38(5):601–610, 2008.
    57. Ozcift, A., and Gulten, A., Classifier ensemble construction with rotation forest to improve medical diagnosis performance of machine learning algorithms. Comput. Meth. Programs Biomed.
    58. Takemura, A., Shimizu, A., and Hamamoto, K., Discrimination of breast tumors in ultrasonic images using an ensemble classifier based on the adaboost algorithm with feature selection. IEEE Trans Med Imaging 29(3):598–609, 2010.
    59. Yu, Z., Deng, Z., Wong, H.-S., and Tan, L., Identifying protein-kinase-specific phosphorylation sites based on the bagging–adaboost ensemble approach. IEEE Trans NanoBioscience 9(2):132–143, 2010.
    60. Ture, M., Tokatli, F., and Kurt, I., Using Kaplan–Meier analysis together with decision tree methods (C&RT, CHAID, QUEST, C4.5 and ID3) in determining recurrence-free survival of breast cancer patients. Expert Syst Appl 36(2):2017–2026, 2009. Part 1.
    61. McCarty, J. A., and Hastak, M., Segmentation approaches in data-mining: a comparison of RFM, CHAID, and logistic regression. J Bus Res 60(6):656–662, 2007.
    62. Kawaguchi, S., and Nishii, R., Hyperspectral image classification by bootstrap AdaBoost with random decision stumps. IEEE Trans Geosci Remote Sens 45(11):3845–3851, 2007.
    63. Gregorcic, G., and Lightbody, G., Gaussian process approach for modelling of nonlinear systems. Eng Appl Artif Intell 22(4–5):522–533, 2009.
    64. Chatzis, S. P., and Demiris, Y., Echo state Gaussian process. IEEE Trans Neural Network 22(9):1435–1445, 2011.
    65. Pillonetto, G., Dinuzzo, F., and De Nicolao, G., Bayesian online multitask learning of Gaussian processes. IEEE Trans Pattern Anal Mach Intell 32(2):193–205, 2010.
    66. Han, M., Fan, J., and Wang, J., A dynamic feedforward neural network based on Gaussian particle swarm optimization and its application for predictive control. IEEE Trans Neural Network 22(9):1457–1468, 2011.
    67. Milpied, P., Dubois, R., Roussel, P., Henry, C., and Dreyfus, G., Arrhythmia discrimination in implantable cardioverter defibrillators using support vector machines applied to a new representation of electrograms. IEEE Trans Biomed Eng 58(6):1797–1803, 2011.
    68. Shao, Y.-H., Zhang, C.-H., Wang, X.-B., Deng, N.-Y., “Improvements on twin support vector machines”. IEEE Trans. Neural. Network. 22(6), June 2011.
    69. Chisci, L., Mavino, A., Perferi, G., Sciandrone, M., Anile, C., Colicchio, G., Fuggetta, F., “Real-time epileptic seizure prediction using AR models and support vector machines”. IEEE Trans. Med. Imag. 57(5), May 2010.
    70. Artan, Y., Haider, M. A., Langer, D. L., van der Kwast, T. H., Evans, A. J., Yang, Y., Wernick, M. N., Trachtenberg, J., and Yetik, I. S., Prostate cancer localization with multispectral MRI using cost-sensitive support vector machines and conditional random fields. IEEE Trans Image Process 19(9):2444–2455, 2010.
    71. Bruzzone, L., Chi, M., and Marconcini, M., A novel transductive SVM for the semisupervised classification of remote-sensing images. IEEE Trans Geosci Remote Sens 44(11):3363–3373, 2006.
    72. Stoean, R., Stoean, C., Lupsor, M., Stefanescu, H., and Badea, R., Evolutionary-driven support vector machines for determining the degree of liver fibrosis in chronic hepatitis C. Artif Intell Med 51(1):53–65, 2011.
    73. Asl, B. M., Setarehdan, S. K., and Mohebbi, M., Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal. Artif Intell Med 44(1):51–64, 2008.
    74. Chen, Z., Li, J., and Wei, L., A multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissue. Artif Intell Med 41(2):161–175, 2007.
    75. Huang, T. M., and Kecman, V., Gene extraction for cancer diagnosis by support vector machines—an improvement. Artif Intell Med 35(1–2):185–194, 2005.
    76. Cortes, C., and Vapnik, V., Support vector networks. Mach Learn 20:273–297, 1995.
    77. Furey, T. S., Cristianini, N., Duffy, N., Bednarski, D. W., Schummer, M., and Haussler, D., Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16:906–914, 2000.
    78. Takeuchi, K., and Collier, N., Bio-medical entity extraction using support vector machines. Artif Intell Med 33:125–137, 2005.
    79. Cohen, G., Hilario, M., Sax, H., Hugonnet, S., and Geissbuhler, A., Learning from imbalanced data in surveillance of nosocomial infection. Artif Intell Med 37:7–18, 2006.
    80. Mavroforakis, M. E., Georgiou, H. V., Dimitropuoulos, N., Cavouras, D., and Theodoridis, S., Mammographic masses characterization based on localized texture and dataset fractal analysis using linear, neural and support vector machine classifiers. Artif Intell Med 37:145–162, 2006.
    81. Arodz, T., Kurdziel, M., Sevre, E. O. D., and Yuen, D. A., Pattern recognition techniques for automatic detection of suspicious-looking anomalies in mammograms. Comput Meth Programs Biomed 79:135–149, 2005.
    82. Ramirez, L., Durdle, N. G., Raso, V. J., and Hill, D. L., A support vector machines classifier to assess the severity of idiopathic scoliosis from surface topology. IEEE Trans Inf Technol Biomed 10(1):84–91, 2006.
    83. Guyon, I., and Elisseeff, A., An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182, 2003.
    84. Hsu, C.-W., and Lin, C.-J., A comparison of methods for multi-class support vector machines. IEEE Trans Neural Network 13(2):415–425, 2002.
    85. Weber, F. M., Keller, D. U. J., Bauer, S., Seemann, G., Lorenz, C., and D枚ssel, O., Predicting tissue conductivity influences on body surface potentials—an efficient approach based on principal component analysis. IEEE Trans Biomed Eng 58(2):265–273, 2011.
    86. Langley, P., Bowers, E. J., and Murray, A., Principal component analysis as a tool for analyzing beat-to-beat changes in ECG features: application to ECG-derived respiration. IEEE Trans Biomed Eng 57(4):821–829, 2010.
    87. Li, X.-L., Adali, T., and Anderson, M., Noncircular principal component analysis and its application to model selection. IEEE Trans Signal Process 59(10):4516–4528, 2011.
    88. Liu, X., Liu, F., and Bai, J., A linear correction for principal component analysis of dynamic fluorescence diffuse optical tomography images. IEEE Trans Biomed Eng 58(6):1602–1611, 2011.
    89. Baskaran, V., Guergachi, A., Bali, R. K., and Naguib, R. N. G., Predicting breast screening attendance using machine learning techniques. IEEE Trans Inf Technol Biomed 15(2):251–259, 2011.
    90. Mandal, I., “Software reliability assessment using artificial neural network”. International Conference and Workshop on Emerging Trends in Technology, February 2010, ACM New York, NY, USA 漏2010, Pages: 698–699
    91. de Jes煤s Rubio, J., Angelov, P., and Pacheco, J., Uniformly stable backpropagation algorithm to train a feedforward neural network. IEEE Trans Neural Network 22(3):356–366, 2011.
    92. Razavi, S., and Tolson, B. A., A new formulation for feedforward neural networks. IEEE Trans Neural Network 22(10):1588–1598, 2011.
    93. Mandal, I., and Sairam, N., “Enhanced classification performance using computational intelligence”. The First International conference on Computer Science and Information Technology (CCSEIT-2011).
    94. Hasan 脰rkc眉, H., and Bal, H., Comparing performances of backpropagation and genetic algorithms in the data classification. Expert Syst Appl 38(4):3703–3709, 2011.
    95. Flores, M. J., Nicholson, A. E., Brunskill, A., Korb, K. B., and Mascaro, S., Incorporating expert knowledge when learning Bayesian network structure: a medical case study. Artif Intell Med 53(3):181–204, 2011.
    96. Štajduhar, I., Dalbelo-Bašic, B., and Bogunovic, N., Impact of censoring on learning Bayesian networks in survival modelling. Artif Intell Med 47(3):199–217, 2009.
    97. Krishnapuram, B., Hartemink, A., Carin, L., and Figueiredo, M., A Bayesian approach to joint feature selection and classifier design. IEEE Trans Pattern Anal Mach Intell 26:1105–1111, 2004.
    98. Lin, J.-H., and Haug, P. J., Exploiting missing clinical data in Bayesian network modeling for predicting medical problems. J Biomed Informat 41(1):1–14, 2008.
    99. Zhong, P., Zhang, P., Wang, R., “Dynamic learning of SMLR for feature selection and classification of hyperspectral data”. IEEE Geosci. Rem. Sens. Lett. 5(2), April 2008.
    100. Bohning, D., Multinomial logistic regression algorithm. Ann Inst Stat Math 44(1):197–200, 1992.
    101. Li, J., Bioucas-Dias, J. M., Plaza, A., “Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning”. IEEE Trans. Geosci. Rem. Sens. 48(11), Nov. 2010.
    102. Guti茅rrez, P. A., Herv谩s-Mart铆nez, C., Mart铆nez-Estudillo, F. J., “Logistic regression by means of evolutionary radial basis function neural networks”. IEEE Trans. Neural. Network. 22(2), Feb. 2011.
    103. Krishnapuram, B., Carin, L., Figueiredo, M. A. T., Hartemink, A. J., “Sparse multinomial logistic regression: fast algorithms and generalization bounds”. IEEE Trans. Pattern. Anal. Mach. Intell. 27(6), June 2005.
    104. Cheng, Q., Varshney, P. K., Arora, M. K., “Logistic regression for feature selection and soft classification of remote sensing data”. IEEE Geosci. Rem. Sens. Lett. 3(4), Oct 2006.
    105. Herv谩s-Mart铆nez, C., Mart铆nez-Estudillo, F. J., and Carbonero-Ruz, M., Multilogistic regression by means of evolutionary product-unit neural networks. Neural Netw 21(7):951–961, 2008.
    106. Keerthi, S. S., Duan, K. B., Shevade, S. K., and Poo, A. N., A fast dual algorithm for kernel logistic regression. Mach Learn 61(1–3):151–165, 2005.
    107. Subrahmanya, N., and Shin, Y., Sparse multiple kernel learning for signal processing applications. IEEE Trans Pattern Anal Mach Intell 32(5):788–798, 2010.
    108. Camps-Valls, G., and Bruzzone, L., Kernel-based methods for hyperspectral image classification. IEEE Trans Geosci Remote Sens 43(6):1351–1362, 2005.
    109. Fauvel, M., Benediktsson, J., Chanussot, J., and Sveinsson, J., Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. IEEE Trans Geosci Remote Sens 46(11):3804–3814, 2008.
    110. Filippone, M., and Sanguinetti, G., Approximate inference of the bandwidth in multivariate kernel density estimation. Comput Stat Data Anal 55(12):3104–3122, 2011.
    111. Li, Z., Jiang, P., Ma, H., Yang, J., and Tang, D. M., A model for dynamic object segmentation with kernel density estimation based on gradient features. Imag Vis Comput 27(6):817–823, 2009.
    112. Hu, S., Poskitt, D. S., Zhang, X., Bayesian adaptive bandwidth kernel density estimation of irregular multivariate distributions. Comput. Stat. Data Anal., 2011.
    113. Bouezmarni, T., and Rombouts, J. V. K., Nonparametric density estimation for multivariate bounded data. J Stat Plann Infer 140(1):139–152, 2010.
    114. Masry, E., Probability density estimation from sampled data. IEEE Trans Inf Theory IT-29(5):697–709, 1983.
    115. Buchtala, O., Klimek, M., and Sick, B., Evolutionary optimization of radial basis function classifiers for data mining applications. IEEE Trans Syst Man Cybern B Cybern 35(5):928–947, 2005.
    116. Oyang, Y.-J., Hwang, S.-C., Ou, Y.-Y., Chen, C.-Y., and Chen, Z.-W., Data classification with radial basis function network based on a novel kernel density estimation algorithm. IEEE Trans Neural Network 16(1):225–236, 2005.
    117. Jessup, M., Abraham, W. T., Casey, D. E., Feldman, A. M., Francis, G. S., Ganiats, T. G., Konstam, M. A., Mancini, D. M., Rahko, P. S., Silver, M. A., Stevenson, L. W., Yancy, C. W., Hunt, S. A., Chin, M. H., Comm, H. F. W., and Members, W. C., Focused update: ACCF/AHA guidelines for the diagnosis and management of heart failure in adults a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 119(14):1977–2016, 2009.
    118. Pearson, T. A., Blair, S. N., Daniels, S. R., Eckel, R. H., Fair, J. M., Fortmann, S. P., Franklin, B. A., Goldstein, L. B., Greenland, Ph, Grundy, S. M., Hong, Y., Miller, N. H., Lauer, R. M., Ockene, I. S., Sacco, R. L., Sallis, J. F., Smith, S. C., Stone, N. J., and Taubert, K. A., AHA guidelines for primary prevention of cardiovascular disease and stroke. Circulation 106(3):388–391, 2002.
    119. Pouladian, M., Golpayegani, M. R. H., Tehrani-Fard, A. A., and Bubvay-Nejad, M., Noninvasive detection of coronary artery disease by arteriooscillography. IEEE Trans Biomed Eng 52(4):743–747, 2005.
    120. G眉ler, I., and 脺beyli, E. D., Automated diagnostic systems with diverse and composite features for Doppler ultrasound signals. IEEE Trans Biomed Eng 53(10):1934–1942, 2006.
    121. Lapuerta, P., Azen, S. P., and Labree, L., Use of neural networks in predicting the risk of coronary artery disease. Comput Biomed Res 28:38–52, 1995.
    122. Raff, G. L., Gallagher, M. J., O’Neill, W. W., and Goldstein, J. A., Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 46(3):552–557, 2005.
    123. Cerqueira, M. D., Weissman, N. J., Dilsizian, V., Jacobs, A. K., Kaul, S., Laskey, W. K., Pennell, D. J., Rumberger, J. A., Ryan, T., and Verani, M. S., Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. Circulation 105:539–542, 2002.
    124. Danias, P. G., Roussakis, A., and Ioannidis, J. P., Diagnostic performance of coronary magnetic resonance angiography as compared against conventional X-ray angiography: a meta-analysis. J Am Coll Cardiol 44(9):1867–1876, 2004.
    125. Plein, S., Radjenovic, A., Ridgway, J. P., Barmby, D., Greenwood, J. P., Ball, S. G., and Sivananthan, M. U., Coronary artery disease: myocardial perfusion MR imaging with sensitivity encoding versus conventional angiography. Radiology 235(2):423–430, 2005.
    126. Pavlopoulos, S. A., Stasis, A. Ch., and Loukis, E. N., A decision tree based method for the differential diagnosis of aortic stenosis from mitral regurgitation using heart sounds. Biomed Eng Online 3:21, 2004.
    127. Podgorelec, V., Kokol, P., Stiglic, B., and Rozman, I., Decision trees: an overview and their use in medicine. J Med Syst 26(5):445–463, 2002.
    128. Karaolis, M. A., Moutiris, J. A., Hadjipanayi, D., and Pattichis, C. S., Assessment of the risk factors of coronary heart events based on data mining with decision trees. IEEE Trans Inf Technol Biomed 14(3):559–566, 2010.
    129. Cai, K.-Y., Cao, P., Dong, Z., and Liu, K., Mathematical modeling of software reliability testing with imperfect debugging. Comput Math Appl 59(10):3245–3285, 2010.
    130. Li, X., Xie, M., and Ng, S. H., Sensitivity analysis of release time of software reliability models incorporating testing effort with multiple change-points. Appl Math Model 34(11):3560–3570, 2010.
    131. Patra, P. S. K., Sahu, D. P., Mandal, I., “An expert system for diagnosis of human diseases”. Int. J. Comput. Appl. 1(13), 2010.
    132. British Heart Foundation. (2008, Mar. 8). European cardiovascular disease statistics. [Online]. Available: http://www.heartstats.org/datapage.asp?id=7683
    133. Euroaspire Study Group, A European Society of Cardiology survey of secondary prevention of coronary heart disease: principal results. Eur Heart J 18:1569–1582, 1997.
    134. Euroaspire II Study Group, Lifestyle and risk factor management and use of drug therapies in coronary patients from 15 countries. Eur Heart J 22:554–572, 2002.
    135. Euroaspire Study Group, Euroaspire III: a survey on the lifestyle, risk factors and use of cardioprotective drug therapies in coronary patients from 22 European countries. Eur J Cardiovasc Prev Rehabil 16(2):121–137, 2009.
    136. Wang, Z., and Hoy, W. E., Is the Framingham coronary heart disease absolute risk function applicable to Aboriginal people? Med J Aust 182(2):66–69, 2005.
    137. Brindle, P., Emberson, J., Lampe, F., Walker, M., Whincup, P., Fahey, T., and Ebrahim, S., Predictive accuracy of the Framingham coronary risk score in British men: prospective cohort study. Br Med Assoc 327:1267–1270, 2003.
    138. Sheridan, S., Pignone, M., and Mulrow, C., Framingham-based tools to calculate the global risk of coronary heart disease: a systematic review of tools for clinicians. J Gen Intern Med 18(12):1060–1061, 2003.
    139. Grundy, S. M., Pasternak, R., Greenland, P., Smith, S., and Fuster, V., Assessment of cardiovascular risk by use of multiple-risk-factor assessment equations. Am Heart Assoc 100:1481–1492, 1999.
    140. Gamberger, D., and R. Bo?skovi麓c Institute, Zarageb, Croatia, “Medical prevention: Targeting high-risk groups for coronary heart disease,” Sol-EU-Net: Data Mining Decision Support [Online]. Available: http://soleunet.ijs.si/website/other/case_solutions/CHD.pdf
    141. Pena-Reyes, C. A., Evolutionary fuzzy modeling human diagnostic decisions. Ann New York Acad Sci 1020:190–211, 2004.
    142. Rea, T. D., Heckbert, S. R., Kaplan, R. C., Smith, N. L., Lemaitre, R. N., and Psaty, B. M., Smoking status and risk for recurrent coronary events after myocardial infraction. Ann Intern Med 137:494–500, 2002.
    143. Park, J. H., Im, K. H., Shin, C.-K., and Park, S. C., MBNR: case-based reasoning with local feature weighting by neural network. Appl Intell 210(3):265–276, 2004.
    144. Termeer, M., Bescos, J. O., Breeuwer, M., Vilanova, A., Gerritsen, F., and Groller, M. E., CoViCAD: comprehensive visualization of coronary artery disease. IEEE Trans Vis Comput Graph 13(6):1632–1639, 2007.
    145. Cho, B. H., Yu, H., Lee, J., Chee, Y. J., In: Kim, Y., Kim, S. I., “Nonlinear support vector machine visualization for risk factor analysis using nomograms and localized radial basis function kernels”. IEEE Transactions on Information Technology in Biomedicine 2008, Volume: 12, Issue: 2, Page(s):247–256
    146. Chi, C.-L., Street, W. N., Katz, D. A., A decision support system for cost-effective diagnosis. Artif. Intell. Med. 50(3):149–161, ISSN 0933-3657, 10.1016/j.artmed.2010.08.001, 2010.
    147. Shortliffe, E. H., Davis, R., Axline, S. G., Buchanan, B. G., Green, C. C., and Cohen, S. N., Computer based consultations in clinical therapeutics: explanation and rule acquition capabilities of the MYCIN system. Comput Biomed Res 80(4):303–320, 1975.
    148. Watson, I. D., Basden, A., and Brandon, P. S., The client centered approach: expert system maintenance. Expert Syst 90(4):189–196, 1992.
    149. Coenen, F., and Bench-Capon, T. J. M., Maintenance and maintainability in regulation based systems. ICL Tech. J. 76–84, 1992.
    150. Chi, C.-L., Street, W. N., and Ward, M. M., Building a hospital referral expert system with a prediction and optimization-based decision support system algorithm. J Biomed Informat 410(2):371–386, 2008.
    151. Tsipouras, M. G., Voglis, C., and Fotiadis, D. I., A framework for fuzzy expert system creation- application to cardiovascular diseases. IEEE Trans Biomed Eng 54(11):2089–2105, 2007.
    152. Tsipouras, M. G., Exarchos, T. P., Fotiadis, D. I., Kotsia, A. P., Vakalis, K. V., Naka, K. K., and Michalis, L. K., Automated diagnosis of coronary artery disease based on data mining and fuzzy modeling. IEEE Trans Inf Technol Biomed 12(4):447–458, 2008.
    153. Boegl, K., Adlassnig, K.-P., Hayashi, Y., Rothenfluh, T. E., and Leitich, H., Knowledge acquisition in the fuzzy knowledge representation framework of a medical consultation system. Artif Intell Med 30(1):1–26, 2004.
    154. Polat, K., Sahan, S., Kodaz, H., and Guenes, S., A hybrid approach to medical decision support systems: combining feature selection, fuzzy weighted pre-processing and AIRS. Comput Meth Programs Biomed 88(2):164–174, 2007.
    155. Swets, J. A., Measuring the accuracy of diagnostic systems. Science 240(4857):1285–1293, 1988.
    156. Shah, M., Marchand, M., Corbeil, J., “Feature selection with conjunctions of decision stumps and learning from microarray data”. IEEE Trans. Pattern. Anal. Mach. Intell. (99): 1, 2011.
  • 作者单位:1. School of Computing, SASTRA University, Thanjavur, 613401 India
  • ISSN:1573-689X
文摘
This paper presents more accurate and reliable computational methods for aiding the treatment of people with coronary artery disease. New techniques are introduced for improved evaluation and distinguish cardiac disease affected patients from the healthy controls. Experiments are conducted with high level of error tolerance rate and confidence level at 95% and 99% and established the results with corrected T-tests based on comparison of various performance measures. Normal kernel density estimator is used for visual distinction of cardiac controls. A new ensemble learning method comprising of Bayesian network as classifier and Principal components method as the projection filter with ranker search is used for the relevant feature selection. Analysis of each model is performed and discusses major findings and concludes with promising results compared to the related works. Multiple Correspondence analysis is used for exploring heart disease variable’s relationships. Robust machine learning algorithms used are Rotation forests, MultiBoosting, Sparse multinomial logistic regression for better performance with fine tuning of their involved parameters. The work aims at improving the software reliability and quality of diagnosis of cardiac disease with robust inference system. To the best of our knowledge, from the literature survey, experimental results presented in this work show best results with supportive statistical inference.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700