Estimation of elastic moduli of particulate-reinforced composites using finite element and modified Halpin–Tsai models
详细信息    查看全文
  • 作者:I. Alfonso ; I. A. Figueroa…
  • 关键词:Composite ; FEA ; Halpin–Tsai ; Angle ; Particles
  • 刊名:Journal of the Brazilian Society of Mechanical Sciences and Engineering
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:38
  • 期:4
  • 页码:1317-1324
  • 全文大小:790 KB
  • 参考文献:1.Engineered Materials Handbook. Volume 1: Composites (1989). ASM International, Metals Park, Ohio
    2.Manna A, Bains HS, Mahapatra PB (2010) Experimental study on fabrication of Al–Al2O3/Grp metal matrix composites. J Compos Mater 45:2003–2010CrossRef
    3.Everett RK, Arsenault RJ (eds) (1991) Metal matrix composites: processing and interface. Academic Press, New York
    4.Wilson S, Ball A (1990) Tribology of composite material. ASM International, Metals Park, Ohio
    5.Rafiee M, He XQ, Mareishi S, Liew KM (2014) Modeling and stress analysis of smart CNTs/fiber/polymer multiscale composite plates. Int J Appl Mech 6(3):23CrossRef
    6.Hashin Z, Rosen BW (1964) The elastic moduli of fiber-reinforced materials. J Appl Mech 31(2):223–232. doi:10.​1115/​1.​3629590 CrossRef
    7.Feng S, Cui X, Li G (2014) Thermo-mechanical analyses of composite structures using face-based smoothed finite element method. Int J Appl Mech 6(2):17CrossRef
    8.Aghdam MM, Smith DJ, Pavier MJ (2000) Finite element micromechanical modelling of yield and collapse behaviour of metal matrix composites. J Mech Phys Solids 48:499–528CrossRef MATH
    9.Halpin JC, Tsai SW (1967) Environmental factors in composite materials design. Air Force Materials Laboratory, TR 67-423
    10.Wu Y, Jia Q, Sheng D, Zhang L (2004) Modeling Young’s modulus of rubber–clay nanocomposites using composite theories. Polym Test 23(8):903–909CrossRef
    11.Cook RD, Malkus DS, Plesha ME (1989) Concepts and applications of finite element analysis, 3rd edn. Wiley, New YorkMATH
    12.Ganesh VV, Chawla N (2005) Effect of particle orientation anisotropy on the tensile behavior of metal matrix composites: experiments and microstructure-based simulation. Mater Sci Eng A 391:342–353CrossRef
    13.Kari S, Berger H, Gabbert U (2007) Numerical evaluation of effective material properties of randomly distributed short cylindrical fibre composites. Comput Mater Sci 39:198–204CrossRef
    14.Liu YJ, Chen XL (2003) Continuum models of carbon nanotube-based composites using the boundary element method. Electron J Boundary Elem 1:316–335MathSciNet
    15.Pahlavanpour M, Moussaddy HH, Ghossein E, Hubert P, Levesque M (2013) Prediction of elastic properties in polymer–clay nanocomposites: analytical homogenization methods and 3D finite element modeling. Comput Mater Sci 79:206–215CrossRef
    16.Alfonso I, Figueroa IA, Sierra JM, Abatal M, Gonzalez G, Rodriguez-Iglesias V, Medina-Flores A, Flores JE (2013) Young’s modulus estimation based on high symmetry 3-D finite element model for metal matrix composites. Comput Mater Sci 69:304–310CrossRef
    17.Karevan M, Pucha RV, Bhuiyan MdA, Kalaitzidoul K (2010) Effect of interphase modulus and nanofiller agglomeration on the tensile modulus of graphite nanoplatelets and carbon nanotube reinforced polypropylene nanocomposites. Carbon Lett 11:325–331CrossRef
    18.Huang Y, Jin KK, Ha SK (2008) Effects of fiber arrangement on mechanical behavior of unidirectional composites. J Compos Mater 42:1851–1871CrossRef
    19.Jung HK, Cheong YM, Ryu HJ, Hong SH (1999) Analysis of anisotropy in elastic constants of SiCp/2124 Al metal matrix composites. Scripta Mater 41:1261–1267CrossRef
    20.McLean A, Soda H, Xia Q, Pramanick AK, Ohno A, Motoyasu G, Shimizu T, Gedeon SA, North T (1997) SiC particulate-reinforced aluminium-matrix composite rods and wires produced by a new continuous casting route. Compos Part A 28:153–162CrossRef
    21.Gurrum SP, Zhao J, Edwards DR (2011) Inclusion interaction and effective material properties in a particle-filled composite material system. J Mater Sci 46(1):101–107. doi:10.​1007/​s10853-010-4844-2 CrossRef
    22.Engineered Materials Handbook. Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (1990) ASM International, Metals Park, Ohio
    23.Chawla N, Shen Y (2001) Mechanical behavior of particle reinforced metal matrix composites. Adv Eng Mater 3:357–370CrossRef
    24.Chawla N, Chawla KK (2006) Microstructure-based modeling of the deformation behavior of particle reinforced metal matrix composites. J Mater Sci 41:913–925CrossRef
    25.Srivastava VK, Gabbert U (2011) Analysis of particles loaded fiber composites for the evaluation of effective material properties with the variation of shape and size. Int J Eng Sci Technol 3:52–68
  • 作者单位:I. Alfonso (1)
    I. A. Figueroa (2)
    V. Rodriguez-Iglesias (3)
    C. Patiño-Carachure (3)
    A. Medina-Flores (4)
    L. Bejar (4)
    L. Pérez (5)

    1. Unidad Morelia, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Campus Morelia UNAM, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, C.P. 58190, Morelia, Michoacán, Mexico
    2. Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior SN. Ciudad Universitaria, Del. Coyoacán, C.P. 04510, Mexico, DF, Mexico
    3. Facultad de Ingeniería, Universidad Autónoma del Carmen, Campus III. Avenida Central S/N. Esq. con Fracc. Mundo Maya, Ciudad del, C.P. 24115, Carmen, Campeche, Mexico
    4. Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, C.P. 58000, Morelia, Michoacán, Mexico
    5. Department of Mechanical Engineering, Advanced Center for Electrical and Electronic Engineering (Basal Project FB0008), Universidad Técnica Federico Santa María, Av. España 1680, Casilla 110-V, Valparaiso, Chile
  • 刊物主题:Mechanical Engineering;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1806-3691
文摘
In this paper, the effect of particle geometry on Young’s modulus for particulate-reinforced composites was estimated using finite elements analysis (FEA) and modified Halpin–Tsai (HT) equations, including not only the effect of the aspect ratio but also the particle shape. This modified HT model includes a new parameter (a) which depends on the angle of the particle corners. FEA was used as a starting point to find the composites behavior depending on the reinforcement features, results that were compared to experimental values. Young’s moduli and stresses distribution were estimated using an AlA356/SiC(p) composite as starting material . Selected particle geometries for modeling were cylinders, truncated cylinders, double cones, and double-truncated cones; while aspect ratios were modified from 0.6 to 1.8. There was an excellent agreement between experimental results, FEA, and modified Halpin–Tsai estimations, showing that the predicting ability of the Halpin–Tsai model could be improved by introducing different shape parameters.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700