Ammonia borane confined by poly(methyl methacrylate)/multiwall carbon nanotube nanofiber composite, as a polymeric hydrogen storage material
详细信息    查看全文
  • 作者:J. Alipour ; A. M. Shoushtari ; A. Kaflou
  • 刊名:Journal of Materials Science
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:50
  • 期:8
  • 页码:3110-3117
  • 全文大小:1,206 KB
  • 参考文献:1. Li SL, Chen W, Luo G, Han XB, Chen DM, Yang K, Chen WP (2012) Effect of hydrogen absorption/desorption cycling on hydrogen storage properties of a LaNi3.8Al1.0Mn0.2 alloy. Int J Hydrog Energy 37:3268-275 CrossRef
    2. Brown MC, Jacques TL, Hess JH, Daemen LL, Mamontov E, Linehan CJ et al (2006) Dynamics of ammonia borane using neutron scattering. Phys B 385-86:266-68 CrossRef
    3. Fernandes R, Patel N, Miotello A, Jaiswal R, Kothari DC (2012) Dehydrogenation of ammonia borane with transition metal-doped co-b alloy catalysts. Int J Hydrog Energy 37:2397-406 CrossRef
    4. Azzouz A (2012) Achievement in hydrogen storage on adsorbents with high surface-to-bulk ratio - Prospects for Si-containing matrices. Int J Hydrog Energy 37:5032-049 CrossRef
    5. Jain IP, Jain P, Jain A (2010) Novel hydrogen storage materials: A review of lightweight complex hydrides. J. Alloys Comp 503:303-39 CrossRef
    6. Hausdorf S, Baitalow F, Wolf G, Mertens F (2008) A procedure for the regeneration of ammonia borane from BNH waste products. Int J Hydrog Energy 33:608-14 CrossRef
    7. Guoa ZX, Shang C, Aguey-Zinsou KF (2008) Materials challenges for hydrogen storage. J Eur Ceram Soc 28:1467-473 CrossRef
    8. Biniwale RB, Rayalu S, Devotta S, Ichikawa M (2008) Chemical hydrides: a solution to high capacity hydrogen storage and supply. Int J Hydrog Energy 33:360-65 CrossRef
    9. Schlapbach L, Zuttel A (2001) Hydrogen-storage materials for mobile applications. Nature 414:353-58 CrossRef
    10. Bogdanovic B, Eberle U, Felderhoff M, Schuth F (2007) Complex aluminum hydrides. Scr Mater 56:813-16 CrossRef
    11. Eberle U, von Helmolt R, Arnold G (2006) Hydrogen storage in metal–hydrogen systems and their derivatives. J Power Sources 154:456-60 CrossRef
    12. Wolf G, Baumann J, Baitalow F, Hoffmann FP (2000) Calorimetric process monitoring of thermal decomposition of B-N-H compounds. Thermochim Acta 343:19-5 CrossRef
    13. Stephens FH, Pons V, Baker RT (2007) Ammonia–borane: the hydrogen source par excellence? Dalton Trans 25:2613-626 CrossRef
    14. Baitalow F, Baumann J, Wolf G, Jaenicke-Ro¨bler K, Leitner G (2002) Thermal decomposition of B-N–H compounds investigated by using combined thermoanalytical methods. Thermochim Acta 391:159-68 CrossRef
    15. Sit V, Geanangel RA, Wendlandt WW (1987) The thermal dissociation of NH3BH3. Thermo Chim Acta 113:379e82 CrossRef
    16. Bo Peng, Jun Chen (2008) Ammonia borane as an efficient and lightweight hydrogen storage medium. Energy Environ Sci 1:479-83
    17. Hu MG, Geanangel RA, Wendlandt WW (1978) The thermal decomposition of ammonia borane. Thermochim Acta 23:249-55 CrossRef
    18. Demirci UB, Miele P (2009) Sodium borohydride versus ammonia borane, in hydrogen storage and direct fuel cell applications. Energy Environ Sc
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
文摘
In this work, poly(methyl methacrylate)/ammonia borane/multiwall carbon nanotube (PMMA/AB/MWCNT) nanofiber composites have been fabricated and the synergetic nanoconfinement effect of nanofiber and CNT components on dehydrogenation temperature and liberating unwanted byproducts of AB (NH3BH3) have been studied. The results of dehydrogenation of PMMA/AB and PMMA/AB/MWCNT samples show 112 and 85?°C exothermic reaction temperatures, which are dramatically lower than pure AB (120?°C). Furthermore, by capture and interaction of AB molecules in the MWCNT and PMMA nanofiber structures, the enthalpy of exothermic decomposition decreases from ?1.00 to ?.83?kJ?mol? H2, suggesting that this type of AB nanofiber composite can provide a convenient reversible hydrogen storage material. The utilization of MWCNT as carbon catalyst and confining of AB result in a decrease of ammonia borane weight loss from 60.00 to 2.88?wt% which in turn can vigorously decline the emission of byproduct impurities. The synthesis process of PMMA/AB/MWCNT nanofiber composites causes the crystal structure of AB particles changed to the amorphous structure which has been clearly confirmed by X-ray diffraction analyses. The strategy of combining nanofiber structure and MWCNT as carbon catalyst with AB particles can be presented as a practicable solution to reach lower operational temperature and to decline undesirable volatile products.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700