Characterization and photocatalytic properties of Ru, C co-modified one-dimensional TiO2-based composites prepared via a single precursor approach
详细信息    查看全文
  • 作者:Juanjuan Song (1)
    Baolin Zhu (1)
    Weiling Zhao (1)
    Xiaojing Hu (1)
    Yukun Shi (1)
    Weiping Huang (1)
  • 关键词:Titanium dioxide ; Ruthenium ; Carbon ; Photocatalytic activity
  • 刊名:Journal of Nanoparticle Research
  • 出版年:2013
  • 出版时间:May 2013
  • 年:2013
  • 卷:15
  • 期:5
  • 全文大小:636 KB
  • 参考文献:1. Amama PB, Itoh K, Murabayashi M (2004) Effect of RuO2 deposition on the activity of TiO2: photocatalytic oxidation of trichloroethylene in aqueous phase. J Mater Sci 39(13):4349-351. doi:10.1023/B:JMSC.0000033424.26080.70 CrossRef
    2. An HQ, Li JX, Zhou J, Li KR, Zhu BL, Huang WP (2010) Iron-coated TiO2 nanotubes and their photocatalytic performance. J Mater Chem 20(3):603-10. doi:10.1039/b908226c CrossRef
    3. Chen D, Jiang Z, Geng J, Wang Q, Yang D (2007) Carbon and nitrogen co-doped TiO2 with enhanced visible-light photocatalytic activity. Ind Eng Chem Res 46(9):2741-746. doi:10.1021/ie061491k CrossRef
    4. Choi Y, Umebayashi T, Yoshikawa M (2004) Fabrication and characterization of C-doped anatase TiO2 photocatalysts. J Mater Sci 39(5):1837-839. doi:10.1023/B:JMSC.0000016198.73153.31 CrossRef
    5. Cong Y, Tian BZ, Zhang JL (2011) Improving the thermal stability and photocatalytic activity of nanosized titanium dioxide via La3+ and N co-doping. Appl Catal B 101(3-):376-81. doi:10.1016/j.apcatb.2010.10.006
    6. Egerton TA, Purnama H, Mattinson JA (2011) The influence of platinum(II) on TiO2 photocatalyzed dye decolourization by rutile, P25 and PC500. J Photochem Photobiol Chem 224(1):31-7. doi:10.1016/j.jphotochem.2011.09.003 CrossRef
    7. Huang Y, Ho WK, Lee SC, Zhang LZ, Li GS, Yu JC (2008) Effect of carbon doping on the mesoporous structure of nanocrystalline titanium dioxide and its solar-light-driven photocatalytic degradation of NOx. Langmuir 24(7):3510-516. doi:10.1021/la703333z CrossRef
    8. Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC (2003) Explaining the enhanced photocatalytic activity of degussa P25 mixed-phase TiO2 using EPR. J Phys Chem B 107(19):4545-549. doi:10.1021/jp0273934 CrossRef
    9. Irie H, Watanabe Y, Hashimoto K (2003) Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chem Lett 32(8):772-73. doi:10.1246/cl.2003.772 CrossRef
    10. Ismail AA, Robben L, Bahnemann DW (2011) Study of the efficiency of UV and visible-light photocatalytic oxidation of methanol on mesoporous RuO2-TiO2 nanocomposites. Chemphyschem 12(5):982-91. doi:10.1002/cphc.201000936 CrossRef
    11. Khan MA, Han DH, Yang OB (2009) Enhanced photoresponse towards visible light in Ru doped titania nanotube. Appl Surf Sci 255(6):3687-690. doi:10.1016/j.apsusc.2008.10.021 CrossRef
    12. Korosi L, Papp S, Bertoti I, Dekany I (2007) Surface and bulk composition, structure and photocatalytic activity of phosphate-modified TiO2. Chem Mater 19(19):4811-819. doi:10.1021/cm070692r CrossRef
    13. Osmana JR, Crayston JA, Pratt A, Richens DT (2008) RuO2–TiO2 mixed oxides prepared from the hydrolysis of the metal alkoxides. Mater Chem Phys 110(2-):256-62. doi:10.1016/j.matchemphys.2008.02.003 CrossRef
    14. Papirer E, Lacroix R, Donnet J-B, Nanse G, Fioux P (1995) XPS study of the halogenation of carbon black—Part 2. Chlorination. Carbon 33(1):63-2. doi:10.1016/0008-6223(94)00111-C CrossRef
    15. Qin GH, Wu QP, Sun Z, Wang Y, Luo JZ, Xue S (2012) Enhanced photoelectrocatalytic degradation of phenols with bifunctionalized dye-sensitized TiO2 film. J Hazar Mater 199:226-32. doi:10.1016/j.jhazmat.2011.10.092 CrossRef
    16. Rizzi GA, Magrin A, Granozzi G (1999) Preparation of epitaxial ultrathin RuO2–TiO2 (110) films by decomposition of Ru3(CO)12. Surf Sci 443(3):277-86. doi:10.1016/S0039-6028(99)01026-2 CrossRef
    17. Sakthivel S, Kisch H (2003) Daylight photocatalysis by carbon-modified titanium dioxide. Angew Chem Int Ed 42(40):4908-911. doi:10.1002/anie.200351577 CrossRef
    18. Saleh TA, Gupta VK (2012) Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide. J Colloid Interface Sci 371:101-06. doi:10.1016/j.jcis.2011.12.038 CrossRef
    19. Soaresa GB, Bravina B, Vazb CMP, Ribeirob C (2011) Facile synthesis of N-doped TiO2 nanoparticles by a modified polymeric precursor method and its photocatalytic properties. Appl Catal B 106(3-):287-94. doi:10.1016/j.apcatb.2011.05.018
    20. Sun H, Bai Y, Cheng Y, Jin W, Xu N (2006) Preparation and characterization of visible-light-driven carbon–sulfur-codoped TiO2 photocatalysts. Ind Eng Chem Res 45(14):4971-976. doi:10.1021/ie060350f CrossRef
    21. Tennakone K, Bandara J (2000) Multiphoton semiconductor photocatalysis. Sol Energy Mater Sol Cells 60(4):61-65. doi:10.1016/S0927-0248(99)00082-3
    22. Tsetseris L (2010) Stability and dynamics of carbon and nitrogen dopants in anatase TiO2: a density functional theory study. Phys Rev B 81(16):165205. doi:10.1103/PhysRevB.81.165205 CrossRef
    23. Vivar M, Fuentes M, Dodd N, Scott J, Skryabin I, Srithar K (2012) First lab-scale experimental results from a hybrid solar water purification and photovoltaic system. Sol Energy Mater Sol Cells 98:260-66. doi:10.1016/j.solmat.2011.11.012 CrossRef
    24. Wang XP, Tang YX, Leiw MY, Lim TT (2011) Solvothermal synthesis of Fe–C codoped TiO2 nanoparticles for visible-light photocatalytic removal of emerging organic contaminants in water. Appl Catal A 409:257-66. doi:10.1016/j.apcata.2011.10.011
    25. Wu Y, Xing M, Zhang J (2011) Gel-hydrothermal synthesis of carbon and boron co-doped TiO2 and evaluating its photocatalytic activity. J Hazard Mater 192(1):368-73. doi:10.1016/j.jhazmat.2011.05.037
    26. Yang X, Cao C, Hohn K, Erickson L, Maghirang R, Hamal D, Klabunde K (2007) Highly visible-light active C- and V-doped TiO2 for degradation of acetaldehyde. J Catal 252(2):296-02. doi:10.1016/j.jcat.2007.09.014 CrossRef
    27. Yu Y, Wu HH, Zhu BL, Wang SR, Huang WP, Wu SH, Zhang SM (2008) Preparation, characterization and photocatalytic activities of F-doped TiO2 nanotubes. Catal Lett 121(1-):165-71. doi:10.1007/s10562-007-9316-1 CrossRef
    28. Yu CL, Cai DJ, Yang K, Yu JC, Zhou Y, Fan CF (2010) Sol–gel derived S,I-codoped mesoporous TiO2 photocatalyst with high visible-light photocatalytic activity. J Phys Chem Solids 71(9):1337-343. doi:10.1016/j.jpcs.2010.06.001 CrossRef
    29. Zhang SM, Chen YY, Yu Y, HH WU, Wang SR, Zhu BL, Huang WP, Wu SH (2008) Synthesis, characterization of Cr-doped TiO2 nanotubes with high photocatalytic activity. J Nanopart Res 10(5):871-75. doi:10.1007/s11051-007-9309-4 CrossRef
    30. Zhang J, Pan C, Fang P, Wei J, Xiong R (2010) Mo?+?C codoped TiO2 using thermal oxidation for enhancing photocatalytic activity. ACS Appl Mater Interf 2(4):1173-176. doi:10.1021/am100011c CrossRef
    31. Zhao XY, Hrbek J, Rodriguez JA (2005) The decomposition and chemistry of Ru3(CO)12 on TiO2(110) studied with X-ray photoelectron spectroscopy and temperature programmed desorption. Surf Sci 575(1-):115-24. doi:10.1016/j.susc.2004.11.012 CrossRef
    32. Zhu BL, Zhang XX, Wang SR, Zhang SM, Wu SH, Huang WP (2007) Synthesis and catalytic performance of TiO2 nanotubes-supported copper oxide for low-temperature CO oxidation. Micro Mesoporous Mater 102(1-):333-36. doi:10.1016/j.micromeso.2006.11.028 CrossRef
  • 作者单位:Juanjuan Song (1)
    Baolin Zhu (1)
    Weiling Zhao (1)
    Xiaojing Hu (1)
    Yukun Shi (1)
    Weiping Huang (1)

    1. The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Metal and Molecule-based Material Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, China
  • ISSN:1572-896X
文摘
With Ru3(CO)12 being used as precursor, Ru and C co-modified one-dimensional nano TiO2 composites (Ru–C/TiO2) were prepared by the single precursor approach. The composites were characterized with TEM, XRD, UV–Vis DRS, XPS, TG–DTA, ICP, and EA. TEM images showed that RuO2 nanoparticles, whose size was in the range of 3-?nm, were uniformly dispersed on the surface of TiO2. XPS results revealed that the carbon in Ru–C/TiO2 calcinated in N2 atmosphere existed as active carbon and carbonate, and ruthenium existed as Ru4+ ions. The photocatalytic performances of products were evaluated by monitoring their catalytic activities for degradation of methyl orange solution under both UV and simulated sunlight irradiations. The influences of contents of ruthenium and carbon, calcination temperature and atmosphere on the photocatalytic activities of the composites were investigated. Obtained results showed that the Ru–C/TiO2 calcinated at 500?°C in N2 atmosphere exhibited higher photocatalytic activity than P25 under the same conditions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700