用户名: 密码: 验证码:
Geochemical characterization and modeling of arsenic behavior in a highly contaminated mining soil
详细信息    查看全文
  • 作者:Sara Bisone ; Vincent Chatain ; Denise Blanc ; Mathieu Gautier…
  • 关键词:Arsenic ; Mining Soil ; Fe oxyhydroxides ; Geochemical modeling ; Mineral assemblage
  • 刊名:Environmental Earth Sciences
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:75
  • 期:4
  • 全文大小:871 KB
  • 参考文献:AFNOR (1996) Qualité des sols—Sols, sédiments—Mise en solution totale par attaque acide (NF X31-147). AFNOR, Paris
    Alam MGM, Tokunaga S, Maekawa T (2001) Extraction of arsenic in a synthetic arsenic-contaminated soil using phosphate. Chemosphere 43(8):1035–1041. doi:10.​1016/​S0045-6535(00)00205-8 CrossRef
    Azcue JM, Nriagu JO (1995) Impact of abandoned mine tailings on the arsenic concentrations in Moira Lake, Ontario. J Geochem Explor 52(1):81–89. doi:10.​1016/​0375-6742(94)00032-7 CrossRef
    Baker DE, Chesnin L (1975) Chemical monitoring of soils for environmental quality and animal and human health. Adv Agro 27:305–375. doi:10.​1016/​S0065-2113(08)70013-0 CrossRef
    Bayard R, Chatain V, Gachet C, Troadec A, Gourdon R (2006) Mobilisation of arsenic from a mining soil in batch slurry experiments under bio-oxidative conditions. Water Res 40(6):1240–1248. doi:10.​1016/​j.​watres.​2006.​01.​025 CrossRef
    Biswas A, Gustafsson JP, Neidhardt H, Halder D, Kundu AK, Chatterjee D, Berner Z, Bhattacharya P (2014) Role of competing ions in the mobilization of arsenic in groundwater of Bengal Basin: Insight from surface complexation modeling. Water Res 55:30–39. doi:10.​1016/​j.​watres.​2014.​02.​002 CrossRef
    Bodénan F, Baranger P, Piantone P, Lassin A, Azaroual M, Gaucher E, Braibant G (2004) Arsenic behaviour in gold-ore mill tailings, Massif Central, France: hydrogeochemical study and investigation of in situ redox signatures. Appl Geochem 19(11):1785–1800. doi:10.​1016/​j.​apgeochem.​2004.​03.​012 CrossRef
    Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park JE, Makino T, Kirkham MB, Scheckel K (2014) Remediation of heavy metal(loid)s contaminated soils—To mobilize or to immobilize? J Hazard Mater 266:141–166. doi:10.​1016/​j.​jhazmat.​2013.​12.​018 CrossRef
    Bowell R (1994) Sorption of arsenic by iron oxides and oxyhydroxides in soils. Appl Geochem 9(3):279–286. doi:10.​1016/​0883-2927(94)90038-8 CrossRef
    Boyle RW, Jonasson IR (1973) The geochemistry of arsenic and its use as an indicator element in geochemical prospecting. J Geochem Explor 2(3):251–296. doi:10.​1016/​0375-6742(73)90003-4 CrossRef
    Carbonell-Barrachina A, Jugsujinda A, DeLaune RD, Patrick WH, Burló F, Sirisukhodom S, Anurakpongsatorn P (1999) The influence of redox chemistry and pH on chemically active forms of arsenic in sewage sludge-amended soil. Environ Int 25(5):613–618. doi:10.​1016/​S0160-4120(99)00027-6 CrossRef
    Carrillo-Chávez A, Salas-Megchún E, Levresse G, Muñoz-Torres C, Pérez-Arvizu O, Gerke T (2014) Geochemistry and mineralogy of mine-waste material from a “skarn-type” deposit in central Mexico: modeling geochemical controls of metals in the surface environment. J Geochem Explor 144(Part A):28–36. doi:10.​1016/​j.​gexplo.​2014.​03.​017 CrossRef
    Chatain V (2004) Characterization of arsenic and other inorganic constituents potential mobilization from soils collected from a gold mining site. Doctoral dissertation, INSA-Lyon, Lyon University, France
    Chatain V, Sanchez F, Bayard R, Moszkowicz P (2003) Arsenic behavior in mining soil. J Phys-Paris IV 107(1):289–292. doi:10.​1051/​jp4:​20030298
    Chatain V, Bayard R, Sanchez F, Moszkowicz P, Gourdon R (2005a) Effect of indigenous bacterial activity on arsenic mobilization under anaerobic conditions. Environ Int 31(2):221–226. doi:10.​1016/​j.​envint.​2004.​09.​019 CrossRef
    Chatain V, Sanchez F, Bayard R, Moszkowicz P, Gourdon R (2005b) Effect of experimentally induced reducing conditions on the mobility of arsenic from a mining soil. J Hazard Mater 122(1):119–128. doi:10.​1016/​j.​jhazmat.​2005.​03.​026 CrossRef
    Clozel B, Battaglia F, Conil P, Ignatiadis I (2002) Physical, chemical, and biological treatability of contaminated soils (Final report—BRGM/RP-52065-FR). BRGM, Orléans
    Coussy S, Benzaazoua M, Bussière B, Peyronnard O, Blanc D, Moszkowicz P, Malchère A (2010) Stabilization/solidification of arsenic in cemented paste backfill: geochemical modeling as a mineralogical characterization tool. In: Proceedings of the first International Stabilization/Solidification Technology forum, pp. 161–170
    Drouhot S, Raoul F, Crini N, Crini N, Tougard, Druart C, Rieffel D, Lambert JC, Tête N, Giraudoux P, Scheifler R (2014) Responses of wild small mammals to arsenic pollution at a partialy remediated mining site in Southern France. Sci Total Environ 470–471:1012–1022CrossRef
    Dzombak DA, Morel FM (1990) Surface complexation modeling: hydrous ferric oxide. Wiley, New York
    Flakova R, Zenisova Z, Sracek O, Kremar D, Ondrejkova I, Chovan M, Lalinska B, Fendekova M (2012) The behavior of arsenic and antimony at Pezinok mining site, southwestern part of the Slovak Republic. Environ Earth Sci 66:1043–1057CrossRef
    Gonzalez-Fernandez O, Queralt I, Manteca JI, Garcia G, Carvalho ML (2011) Distribution of metals in soils and plants around mineralized zones at Cartagena-La Unión mining district (SE, Spain). Environ Earth Sci 63(6):1227–1237CrossRef
    Huang YC (1994) Arsenic distribution in soils. In: Nriagu JO (ed) Arsenic in the environment—Part 1. Wiley, New York, pp 17–49
    Hudson-Edwards KA, Schell C, Macklin MG (1999) Mineralogy and geochemistry of alluvium contaminated by metal mining in the Rio Tinto area, southwest Spain. Appl Geochem 14(8):1015–1030. doi:10.​1016/​S0883-2927(99)00008-6 CrossRef
    Hummel W, Berner U, Curti E, Pearson F, Thoenen T (2002) Nagra/PSI chemical thermodynamic data base 01/01. Nagra NTB 02-16, Nagra, Wettingen, Switzerland. http://​www.​nagra.​ch/​g3.​cms/​s_​page/​77900/​s_​name/​shopengl/​S_​NAME/​shopde/​lang/​EN
    Jana U, Chassany V, Bertrand G, Castrec-Rouelle M, Aubry E, Boudsocq S, Laffray D, Repellin A (2012) Analysis of arsenic and antimony distribution within plants growing at an old mine site in Ouche (Cantal, France) and identification of species suitable for site revegetation. J Environ Manage 110:188–193CrossRef
    Jiang W, Zhang S, Shan XQ et al (2005) Adsorption of arsenate on soils. Part 2: modeling the relationship between adsorption capacity and soil physiochemical properties using 16 Chinese soils. Environ Pollut 138(2):285–289. doi:10.​1016/​j.​envpol.​2005.​03.​008 CrossRef
    Kosson DS, van der Sloot HA, Sanchez F, Garrabrants AC (2002) An integrated framework for evaluating leaching in waste management and utilization of secondary materials. Environ Eng Sci 19(3):159–204. doi:10.​1089/​1092875027600791​88 CrossRef
    Lumsdon DG, Meeussen JCL, Paterson E, Garden LM, Anderson P (2001) Use of solid phase characterisation and chemical modelling for assessing the behaviour of arsenic in contaminated soils. Appl Geochem 16(6):571–581. doi:10.​1016/​S0883-2927(00)00063-9 CrossRef
    Matera V, Le Hecho I, Laboudigue A, Thomas P, Tellier S, Astruc M (2003) A methodological approach for the identification of arsenic bearing phases in polluted soils. Environ Pollut 126(1):51–64. doi:10.​1016/​S0269-7491(03)00146-5 CrossRef
    Navarro MC, Pérez-Sirvent C, Martínez-Sánchez MJ, Vidal J, Tovar PJ, Bech J (2008) Abandoned mine sites as a source of contamination by heavy metals: a case study in a semi-arid zone. J Geochem Explor 96(2–3):183–193. doi:10.​1016/​j.​gexplo.​2007.​04.​011 CrossRef
    Nordstrom DK, Parks GA (1987) Solubility and stability of scorodite, FeAsO4·2H2O: discussion. Am Mineral 72(7–8):849–851
    Paktunc D, Bruggeman K (2010) Solubility of nanocrystalline scorodite and amorphous ferric arsenate: implications for stabilization of arsenic in mine wastes. Appl Geochem 25(5):674–683. doi:10.​1016/​j.​apgeochem.​2010.​01.​021 CrossRef
    Parkhurst DL, Appelo C (1999) User’s guide to PHREEQC (Version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations
    Peyronnard O, Blanc D, Benzaazoua M, Moszkowicz P (2009) Study of mineralogy and leaching behavior of stabilized/solidified sludge using differential acid neutralization analysis: Part II: use of numerical simulation as an aid tool for cementitious hydrates identification. Cement Concrete Res 39(6):501–509. doi:10.​1016/​j.​cemconres.​2009.​03.​012 CrossRef
    Reith F, McPhail D (2007) Mobility and microbially mediated mobilization of gold and arsenic in soils from two gold mines in semi-arid and tropical Australia. Geochim Cosmochimi Ac 71(5):1183–1196. doi:10.​1016/​j.​gca.​2006.​11.​014 CrossRef
    Savage KS, Tingle TN, O’Day PA, Waychunas GA, Bird DK (2000) Arsenic speciation in pyrite and secondary weathering phases, Mother Lode gold district, Tuolumne County, California. Appl Geochem 15(8):1219–1244. doi:10.​1016/​S0883-2927(99)00115-8 CrossRef
    Smedley P, Kinniburgh D (2002) A review of the source, behavior and distribution of arsenic in natural waters. Appl Geochem 17(5):517–568. doi:10.​1016/​S0883-2927(02)00018-5 CrossRef
    Sracek O, Bhattacharya P, Jacks G, Gustafsson JP, von Brömssen M (2004) Behavior of arsenic and geochemical modeling of arsenic enrichment in aqueous environments. Appl Geochem 19(2):169–180. doi:10.​1016/​j.​apgeochem.​2003.​09.​005 CrossRef
    Tamaki S, Frankenberger WT Jr (1992) Environmental biochemistry of arsenic. Rev Environ Contam T 124:79–110
    van der Sloot H, Heasman L, Quevauviller P (1997) Harmonization of leaching/extraction tests. Studies in Environmental Science. Elsevier, Amsterdam
    Yang JK, Barnett MO, Jardine PM, Basta NT, Casteel SW (2002) Adsorption, sequestration, and bioaccessibility of As (V) in soils. Environ Sci Technol 36(21):4562–4569. doi:10.​1021/​es011507s CrossRef
  • 作者单位:Sara Bisone (1)
    Vincent Chatain (1)
    Denise Blanc (1)
    Mathieu Gautier (1)
    Rémy Bayard (1)
    Florence Sanchez (2)
    Rémy Gourdon (1)

    1. LGCIE—DEEP (Déchets Eau Environnement Pollutions), EA4126, Université de Lyon, INSA Lyon, 69621, Villeurbanne Cedex, France
    2. Department of Civil and Environmental Engineering, Vanderbilt University, Station B-35 1831, Nashville, TN, 37235, USA
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:None Assigned
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1866-6299
文摘
The environmental assessment and management of historical mining sites contaminated with various inorganic species require a better knowledge of pollutant-bearing phases. Among elements present in mining soils, arsenic is a toxic metalloid with potential high content and high mobility capacity into the environment. The objective of this paper was to investigate the mobility and fractionation of arsenic (As) in a highly As contaminated soil (ca. 3 wt%). The soil was collected from an old gold mining site in France, where mining activities and smelting processes of gold ores took place. Single and sequential chemical extraction procedures were firstly conducted. These leaching tests were used to assess the potential mobility of As depending on its fractionation in the contaminated soil, and also on the portion of As sorbed onto soil particles. Additionally numerical simulations were performed using the USGS software PHREEQC-3 in order to evaluate the role of adsorption on As mobilization. This multidisciplinary approach provided information on the nature of As fixation in this mining soil. Moreover the role of adsorption in the control of dissolved As was evidenced by geochemical modeling. Results showed that As appeared to be mainly (ca. 72 wt%) reversibly sorbed to iron (Fe) compounds in the soil, in particular Fe oxyhydroxides. Consequently a potential risk of As mobilization exists especially under acidic and/or reducing conditions, which frequently occurs in mining environments. Keywords Arsenic Mining Soil Fe oxyhydroxides Geochemical modeling Mineral assemblage

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700