Prediction of porosity and water saturation using pre-stack seismic attributes: a comparison of Bayesian inversion and computational intelligence methods
详细信息    查看全文
文摘
Rock physical parameters such as porosity and water saturation play an important role in the mechanical behavior of hydrocarbon reservoir rocks. A valid and reliable prediction of these parameters from seismic data is essential for reservoir characterization, management, and also geomechanical modeling. In this paper, the application of conventional methods such as Bayesian inversion and computational intelligence methods, namely support vector regression (SVR) optimized by particle swarm optimization (PSO) and adaptive network-based fuzzy inference system-subtractive clustering method (ANFIS-SCM), is demonstrated to predict porosity and water saturation. The prediction abilities offered by Bayesian inversion, SVR-PSO, and ANFIS-SCM were presented using a synthetic dataset and field data available from a gas carbonate reservoir in Iran. In these models, seismic pre-stack data and attributes were utilized as the input parameters, while the porosity and water saturation were the output parameters. Various statistical performance indexes were utilized to compare the performance of those estimation models. The results achieved indicate that the ANFIS-SCM model has strong potential for indirect estimation of porosity and water saturation with high degree of accuracy and robustness from seismic data and attributes in both synthetic and real cases of this study.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700