The Influence of Phosphate Mining on the Chemical Composition of Annual Atmospheric Deposition in Catalão (GO) and Tapira (MG), Brazil
详细信息    查看全文
  • 作者:Fabiano Tomazini da Conceição ; Taise Litholdo…
  • 关键词:Rainwater composition ; Atmospheric environment ; Mining activities ; Brazil
  • 刊名:Water, Air, and Soil Pollution
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:227
  • 期:3
  • 全文大小:1,479 KB
  • 参考文献:Al-Momani, I. F., Ataman, O. Y., Anwari, A. M., Tuncel, S., Köse, C., & Tuncel, G. (1995). Chemical composition of precipitation near an industrial area at Izmir, Turkey. Atmospheric Environment, 29, 1131–1143.CrossRef
    Berner, E. K. & Berner, R. A. (1996). Global environment, water, air and geochemical cycles. Prentice Hall.
    Conceição, F. T., & Bonotto, D. M. (2004). Weathering rates anthropogenic influences in a sedimentary basin, São Paulo State, Brazil. Applied Geochemistry, 19, 575–591.CrossRef
    Conceição, F. T., & Bonotto, D. M. (2006). Distribuição de radionuclídeos, metais pesados e flúor nos perfis supérgenos de Tapira (GO) e Catalão (GO). Geochimica Brasiliensis, 20, 175–190.
    Conceição, F. T., Sardinha, D. S., Souza, A. D. G., & Navarro, G. R. B. (2010). Anthropogenic influences on annual flux of cations and anions at Meio Stream basin, São Paulo State, Brazil. Water, Air, and Soil Pollution, 205, 79–91.CrossRef
    Conceição, F. T., Sardinha, D. S., Navarro, G. R. B., Antunes, M. L. P., & Angelucci, V. A. (2011). Rainwater chemical composition and annual atmospheric deposition at Alto Sorocaba basin. Quimica Nova, 34, 610–616.CrossRef
    Conceição, F. T., Santos, C. M., Sardinha, D. S., Navarro, G. R. B., & Godoy, L. H. (2015). Chemical weathering rate, denudation rate, and atmospheric and soil CO2 consumption of Paraná flood basalts in São Paulo State, Brazil. Geomorphology, 233, 41–51.CrossRef
    Danelon, O. M., & Moreira-Nordemann, L. M. (1991). Ocorrência Natural e Antropogênica de Cl−, Na+, NO3 −, NH4 + e SO4 + na Bacia do Rio Quilombo (Cubatão—SP). Revista Brasileira de Geociencias, 21, 96–101.
    DNPM—Departamento Nacional de Produção Mineral. (2011). Anuário Mineral Brasileiro 2010. Brasília, DNPM, 35, 871 p.
    DNPM—Departamento Nacional de Produção Mineral. (2012). Sumário Mineral 2012. Brasília, DNPM, 32, 136 p.
    DNPM—Departamento Nacional de Produção Mineral. (2014). Informe Mineral 1°/2014. Brasília, DNPM, 21 p.
    Figueredo, D. V. (1999). Influence of calcareous soil particulates on acid rain: Belo Horizonte metropolitan region, Brazil. Ambio, 28, 514–518.
    Flues, M., Hamma, P., Lemes, M. J. L., Dantas, E. S. K., & Fornaro, A. (2002). Evaluation of the rainwater acidity of a rural region due to a coal-fired power plant in Brazil. Atmospheric Environment, 36, 2397–2404.CrossRef
    Fontenele, A. P. G., Pedrotti, J. J., & Fornaro, A. (2009). Avaliação de metais e íons majoritários em águas de chuva na cidade de São Paulo. Quimica Nova, 32, 839–844.CrossRef
    Fornaro, A., & Gutz, I. G. R. (2006). Wet deposition and related atmospheric chemistry in the São Paulo metropolis. Part 3: trends in the precipitation chemistry during 1983–2003. Atmospheric Environment, 40, 5893–5901.CrossRef
    Forti, M. C., Moreira-Nordemann, L. M., Andrade, M. F., & Orsini, C. Q. (1990). Elements in the precipitation of São Paulo city (Brazil). Atmospheric Environment, 24, 355–360.
    Galloway, J. N., Likens, G. E., Keene, W. C., & Miller, J. M. (1982). The composition of precipitation in remote areas of the world. Journal of Geophysical Research, 87, 8771–8786.CrossRef
    Gibson, S. A., Thompson, R. N., Leonardos, O. H., Dickin, A. P., & Mitchell, J. G. (1995). The Late Cretaceous impact of the Trindade mantle plume—evidence from large-volume, mafic, potassic magmatism is SE Brazil. Journal of Petrology, 36, 189–229.CrossRef
    Gonçalves, F. L. T., Massambani, O., Beheng, K. D., Vautz, W., Schilling, M., Solci, M. C., Rocha, V., & Klockow, D. (2000). Modelling and measurements of below cloud scavenging processes in the highly industrialized region of Cubatão—Brazil. Atmospheric Environment, 34, 4113–4120.CrossRef
    Hontoria, C., Saa, A., Almorox, J., Cuadra, L., Sánchez, A., & Gascó, J. M. (2003). The chemical composition of precipitation in Madrid. Water, Air, and Soil Pollution, 146, 35–54.CrossRef
    Kaya, G., & Tuncel, G. (1997). Trace element and major ion composition of wet and dry deposition in Ankara, Turkey. Atmospheric Environment, 31, 3985–3998.CrossRef
    Keene, W. C., Pszenny, A. A. P., Galloway, J. N., & Hawley, M. E. (1986). Sea-salt corrections and interpretation of constituent rations in marine precipitation. Journal of Geophysical Research, 91, 6647–6658.CrossRef
    Lara, L. B. L. S., Artaxo, P., Martinelli, L. A., Victoria, R. L., Camargo, P. B., Krusche, A., Ayres, G. P., Ferraz, E. S. B., & Ballester, M. V. (2001). Chemical composition of rainwater and anthropogenic influences in the Piracicaba river basin, southeast Brazil. Atmospheric Environment, 35, 4937–4945.CrossRef
    Leal, T. F. M., Fontenele, P. G., Pedrotti, J. J., & Fornaro, A. (2004). Composição iônica majoritária de águas de chuva no centro da cidade de São Paulo. Quimica Nova, 27, 855–861.CrossRef
    Luca, S. J., Milano, L. B., & Ide, C. N. (1991). Rain and urban stormwater quality. Water Science and Technology, 23, 133–140.
    Manahan, S. E. (1994). Environmental chemistry (6th ed.). Florida, USA: CRC Press.
    Mello, W. Z. (2001). Precipitation chemistry in the coast of the Metropolitan Region of Rio de Janeiro, Brazil. Environmental Pollution, 114, 235–242.CrossRef
    Mello, W. Z., & De Almeida, M. (2004). Rainwater chemistry at the summit and southern flank of the Itatiaia massif, Southeastern Brazil. Environmental Pollution, 129, 63–68.CrossRef
    Migliavacca, D., Teixeira, E. C., Pires, M., & Fachel, J. (2004). Study of chemical elements in atmospheric precipitation in South Brazil. Atmospheric Environment, 38, 1641–1656.CrossRef
    Migliavacca, D., Teixeira, E. C., Wiegand, F., Machado, A. C. M., & Sanchez, J. (2005). Atmospheric precipitation and chemical composition of an urban site, Guaíba hydrographic basin, Brazil. Atmospheric Environment, 39, 1829–1844.CrossRef
    Molinaroli, E., Pistolato, M., Rampazzo, G., & Guerzoni, S. (1999). Geochemistry of natural and anthropogenic fall-out (aerosol and precipitation) collected from the NW Mediterranean: two different multivariate statistical approaches. Applied Geochemistry, 14, 423–432.CrossRef
    Moreira-Nordemann, L. M. & Girard, P. (1996). Precipitação úmida comparativa em duas cidades brasileira. Anais do VII Congresso Argentino de Meteorologia.
    Moreira-Nordemann, L. M., Girard, P., & Ré Poppi, N. (1997). Química da precipitação atmosférica na cidade de Campo Grande (MS). Revista Brasileira de Geofísica, 15, 36–42.CrossRef
    Mosello, R., Bianchi, M., Geiss, H., Marchetto, A., Serrini, G., Serini Lanza, G., Tartari, G.A., Muntau, H. (1996). AQUACON-MedBas Subproject No. 6: acid rain analysis. Environment Institute: Luxembourg.
    Négrel, P., & Roy, S. (1998). Chemistry of rainwater in the Massif Central (France): a strontium isotope and major element study. Applied Geochemistry, 13, 941–952.CrossRef
    Oliveira, S. M. B., & Imbernon, R. A. L. (1998). Weathering alteration and related REE concentration in the Catalão I carbonatite complex, central Brazil. Journal of South American Earth Sciences, 11, 379–388.CrossRef
    Paiva, R. P., Pires, M. A. F., Munita, C. S., Andrade, M. F., Gonçalves, F. L. T., & Massambani, O. (1997). A preliminary study of the anthropogenic contribution to São Paulo rainfall. Fresenius Environmental Bulletin, 6, 508–513.
    Pelicho, A. F., Martins, L. D., Nomi, S. N., & Solci, M. C. (2006). Integrated and sequential bulk and wet-only samplings of atmospheric precipitation in Londrina, South Brazil (1998–2002). Atmospheric Environment, 40, 6827–6835.CrossRef
    Rocha, F. R., da Silva, J. A. F., Lago, C. L., Fornaro, A., & Gutz, I. G. R. (2003). Wet deposition and related atmospheric chemistry in the São Paulo metropolis, Brazil. Part 1: major inorganic ions in rainwater as evaluated by capillary electrophoresis with contactless conductivity detection. Atmospheric Environment, 37, 105–115.CrossRef
    Saueia, C. H. R., & Mazzilli, B. P. (2006). Distribution of natural radionuclides in the production and use of phosphate fertilizers in Brazil. Journal of Environmental Radioactivity, 89, 229–239.CrossRef
    Souza, P. A., Mello, W. Z., Maldonado, J., & Evangelista, H. (2006). Composição química da chuva e aporte atmosférico na Ilha Grande, RJ. Quimica Nova, 29, 471–476.CrossRef
    Williams, R. M. & Fisher, T. M. (1997) Chemical composition and deposition of rain in the Central Amazon, Brazil. Atmospheric Environmental, 31, 207–217.
    Wilson, T. R. S. (1975). Salinity and the major elements of sea water. In J. P. Riley & G. Skirrow (Eds.), Chemical oceanography (2nd ed.). Orlando, Florida, USA: Academic.
  • 作者单位:Fabiano Tomazini da Conceição (1) (3)
    Taise Litholdo (1)
    Diego de Souza Sardinha (2)
    Rodrigo Braga Moruzzi (1)
    Guillermo Rafael Beltran Navarro (1)
    Letícia Hirata Godoy (1)

    1. UNESP—Instituto de Geociências e Ciências Exatas (IGCE), Rio Claro, SP, Brazil
    3. Avenida 24-A, n. 1515, CEP 13506-900, Bela Vista, Rio Claro, São Paulo, Brazil
    2. UNIFAL—Universidade Federal de Alfenas, Instituto de Ciência e Tecnologia, Poços de Caldas, MG, Brazil
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Terrestrial Pollution
    Hydrogeology
  • 出版者:Springer Netherlands
  • ISSN:1573-2932
文摘
Brazil is an important country within the global mineral industry. The main reserves of phosphate rock in Brazil are contained in the states of Goiás and Minas Gerais, at the Catalão and Tapira cities, respectively. Atmospheric inputs due to the mining of phosphate rock may have various effects on human health in areas near these types of mines. Thus, this work evaluated the influence of phosphate mining on the chemical composition and annual atmospheric deposition in Catalão (GO) and Tapira (MG), Brazil. The pH of rainwater was 6.90 in Catalão and 6.80 in Tapira. The ionic concentrations (in μeq/L) at both study sites decreased in the following order: Ca2+ > Na+ > Mg2+ > K+ for cations and HCO3 − > NO3 − > SO4 2− > PO4 3− > F− > Cl− for anions. High Ca2+ content indicates that Ca2+ contributes to the neutralisation of the rainwater pH in both of the areas studied. The annual atmospheric deposition of NO3 − and SO4 2− can be attributed to the use of diesel-powered trucks in and around mining areas. Soil dust derived is responsible for the annual atmospheric deposition of Na+ and K+. Phosphate mining activities are the main source of the annual atmospheric deposition of PO4 3− and F−. Keywords Rainwater composition Atmospheric environment Mining activities Brazil

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700