A Simple Unlearning Framework for Online Learning Under Concept Drifts
详细信息    查看全文
  • 关键词:Online learning ; Concept drift
  • 刊名:Lecture Notes in Computer Science
  • 出版年:2016
  • 出版时间:2016
  • 年:2016
  • 卷:9651
  • 期:1
  • 页码:115-126
  • 全文大小:510 KB
  • 参考文献:1.Baena-García, M., del Campo-Ávila, J., Fidalgo, R., Bifet, A., Gavaldà, R., Morales-Bueno, R.: Early drift detection method. In: International Workshop on Knowledge Discovery from Data Streams, pp. 77–86 (2006)
    2.Bifet, A., Gavalda, R.: Learning from time-changing data with adaptive windowing. In: SIAM International Conference on Data Mining, pp. 443–448 (2007)
    3.Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, Y.: Online passive-aggressive algorithms. J. Mach. Learn. Res. 7, 551–585 (2006)MathSciNet MATH
    4.Dredze, M., Crammer, K., Pereira, F.: Confidence-weighted linear classification. In: Proceedings of the 25th International Conference on Machine Learning, pp. 264–271 (2008)
    5.Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 286–295. Springer, Heidelberg (2004)CrossRef
    6.Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. (CSUR) 46(4), 1–37 (2014)CrossRef MATH
    7.Harries, M., Wales, N.S.: Splice-2 comparative evaluation: electricity pricing (1999)
    8.Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 97–106 (2001)
    9.Crammer, K., Alex Kulesza, M.D.: Adaptive regularization of weight vectors. Mach. Learn. 91, 155–187 (2013)MathSciNet CrossRef MATH
    10.Kolter, J.Z., Maloof, M.A.: Dynamic weighted majority: an ensemble method for drifting concepts. J. Mach. Learn. Res. 8, 2755–2790 (2007)MATH
    11.LeCun, Y., Cortes, C.: MNIST handwritten digit database. AT&T Labs (2010)
    12.Nishida, K., Yamauchi, K.: Detecting concept drift using statistical testing. In: Corruble, V., Takeda, M., Suzuki, E. (eds.) DS 2007. LNCS (LNAI), vol. 4755, pp. 264–269. Springer, Heidelberg (2007)CrossRef
    13.Ralf, K., Joachims, T.: Detecting concept drift with support vector machines. In: Proceedings of the Seventeenth International Conference on Machine Learning, pp. 487–494 (2000)
    14.Shalev-Shwartz, S.: Online learning and online convex optimization. Found. Trends Mach. Learn. 4, 107–194 (2012)CrossRef MATH
    15.Sobhani, P., Beigy, H.: New drift detection method for data streams. Adapt. Intell. Syst. 6943, 88–97 (2011)CrossRef
    16.Tsymbal, A.: The problem of concept drift: definitions and related work. Technical report, Computer Science Department, Trinity College Dublin (2004)
    17.Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Mach. Learn. 23, 69–101 (1996)
    18.You, S.C.: Dynamic unlearning for online learning on concept-drifting data. Masters thesis, National Taiwan University (2015)
  • 作者单位:Sheng-Chi You (19)
    Hsuan-Tien Lin (19)

    19. Department of Computer Science and Information Engineering, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei, Taiwan
  • 丛书名:Advances in Knowledge Discovery and Data Mining
  • ISBN:978-3-319-31753-3
  • 刊物类别:Computer Science
  • 刊物主题:Artificial Intelligence and Robotics
    Computer Communication Networks
    Software Engineering
    Data Encryption
    Database Management
    Computation by Abstract Devices
    Algorithm Analysis and Problem Complexity
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1611-3349
文摘
Real-world online learning applications often face data coming from changing target functions or distributions. Such changes, called the concept drift, degrade the performance of traditional online learning algorithms. Thus, many existing works focus on detecting concept drift based on statistical evidence. Other works use sliding window or similar mechanisms to select the data that closely reflect current concept. Nevertheless, few works study how the detection and selection techniques can be combined to improve the learning performance. We propose a novel framework on top of existing online learning algorithms to improve the learning performance under concept drifts. The framework detects the possible concept drift by checking whether forgetting some older data may be helpful, and then conduct forgetting through a step called unlearning. The framework effectively results in a dynamic sliding window that selects some data flexibly for different kinds of concept drifts. We design concrete approaches from the framework based on three popular online learning algorithms. Empirical results show that the framework consistently improves those algorithms on ten synthetic data sets and two real-world data sets.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700