An \(\hbox {FE}^{2}\) model for the analysis of shape memory alloy fiber-composites
详细信息    查看全文
  • 作者:Benedikt Kohlhaas (1)
    Sven Klinkel (1)

    1. Lehrstuhl f眉r Baustatik und Baudynamik
    ; RWTH Aachen University ; Mies-van-der-Rohe-Str. 1 ; 52074 ; Aachen ; Germany
  • 关键词:Shape memory fiber ; Composite ; Rebar concept ; $$\hbox {FE}^{2}$$ FE 2 approach
  • 刊名:Computational Mechanics
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:55
  • 期:2
  • 页码:421-437
  • 全文大小:1,329 KB
  • 参考文献:1. McCormick J, DesRoches R, Fugazza D, Auricchio F (2006) Seismic vibration control using superelastic shape memory alloys. J Eng Mater-T ASME 128:294 CrossRef
    2. Castellano M, Colato G, Infanti S (2004) Use of viscous dampers and shock transmission units in the seismic protection of buildings. In: Proceedings of 13th world conference on earthquake engineering, pp. 1鈥?5. Paper No. 2172
    3. Indirli M, Castellano M, Clemente P, Martelli A (2001) Demo-application of shape memory alloy devices: the rehabilitation of the S. Giorgio Church bell tower. In: Liu SC (ed) Smart structures and materials 2001: Smart systems for bridges, structures, and highways, society of photo-optical instrumentation engineers (SPIE) conference series, vol 4330, Society of photo-optical instrumentation engineers (SPIE) conference series, vol 4330, pp. 262鈥?72
    4. Indirli M, Spadoni B, Carni R, Clemente C, Martelli A, Castellano M (2008) Shape memory alloy devices for the structural improvement of masonry heritage structures. Int J Archit Herit 2:93 CrossRef
    5. Song G, Ma N, Li HN (2006) Applications of shape memory alloys in civil structures. Eng Struct 28:1266 CrossRef
    6. Moser K, Bergamini A, Christen R, Czaderski C (2005) Feasibility of concrete prestressed by shape memory alloy short fibers. Mater Struct 38:593 CrossRef
    7. Janke L, Czaderski C, Motavalli M, Ruth J (2005) Formged盲chtnislegierungen in Ingenieurstrukturen des Stahlbetonbaues: Materialph盲nomene, Anwendungskonzepte und Visionen. Mater Struct 38(279):578 CrossRef
    8. Klinkel S, Kohlhaas B (2011) Modellierung und Anwendung von Formged盲chtnislegierungen im Bauwesen. Bauingenieur-germany Jahresausgabe 2011/2012:101
    9. Achenbach M, M眉ller I (1982) A model for shape memory. J Phys Paris 43(C4):163 CrossRef
    10. Seelecke S, M眉ller I (2004) Shape memory alloy actuators in smart structures: modeling and simulation. Appl Mech Rev 57:23 CrossRef
    11. Brinson L (1993) One-dimensional behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable. J Intel Mater Syst Struct 4:229 CrossRef
    12. Leclercq S, Lexcellent C (1996) A general macroscopic description of the thermomechanical behavior of shape memory alloys. J Mech Phys Solids 44(6):953 CrossRef
    13. Raniecki B, Lexcellent C (1998) Thermodynamics of isotropic pseudoelasticity in shape memory alloys. Eur J Mech A Solid 17:185 CrossRef
    14. Bo Z, Lagoudas D (1999) Thermomechanical modeling of polycrystalline {SMAs} under cyclic loading, Part I: theoretical derivations. Int J Eng Sci 37(9):1089 CrossRef
    15. Lagoudas D, Bo Z (1999) Thermomechanical modeling of polycrystalline {SMAs} under cyclic loading, Part II: material characterization and experimental results for a stable transformation cycle. Int J Eng Sci 37(9):1141 CrossRef
    16. Bo Z, Lagoudas D (1999) Thermomechanical modeling of polycrystalline {SMAs} under cyclic loading, Part III: evolution of plastic strains and two-way shape memory effect. Int J Eng Sci 37(9):1175 CrossRef
    17. Bo Z, Lagoudas D (1999) Thermomechanical modeling of polycrystalline {SMAs} under cyclic loading, Part IV: modeling of minor hysteresis loops. Int J Eng Sci 37(9):1205 CrossRef
    18. Helm D (2001) Formged盲chtnislegierungen: experimentelle Untersuchung, ph盲nomenologische Modellierung und numerische Simulation der thermomechanischen Materialeigenschaften. Ph.D. thesis, Universit盲t Gesamthochschule Kassel
    19. Helm D, Haupt P (2003) Shape memory behaviour: modelling within continuum thermomechanics. Int J Solids Struct 40:827 CrossRef
    20. Helm D (2007) Numerical simulation of martensititc phase transitions in shape memory alloys using an improved integration algorithm. Int J Numer Methods Eng 69:1997 CrossRef
    21. Helm D (2007) Thermomechanics of martensititc phase transformations in shape memory alloys 鈥?I. Constitutive theories for small and large deformations. J Mech Mater Struct 2:87 CrossRef
    22. Christ D, Reese S (2008) Thermomechanically coupled modelling of shape memory alloys in the framework of large strains. GAMM-Mitteilungen 31(2):176 CrossRef
    23. Christ D, Reese S (2009) A finite element model for shape memory alloys considering thermomechanical couplings at large strains. Int J Solids Struct 46:3694 CrossRef
    24. Christ D (2009) Thermomechanical modelling of shape memory alloy structures in medical applications. Ph.D. thesis, Technische Universit盲t Braunschweig
    25. Lagoudas D (2008) Shape memory alloys: modeling and engineering applications. Springer, Boston
    26. Evangelista V, Marfia S, Sacco E (2009) Phenomenological 3D and 1D consistent models for shape-memory alloy materials. Comput Mech 44(3):405 CrossRef
    27. Khandan R, Mahzoon M, Fazelzadeh S, Ali H (2009) A consistent approach for deriving a 1D constitutive equation for shape memory alloys. Smart Mater Struct 18(9):1 CrossRef
    28. Aboudi J, Freed Y (2006) Two-way thermomechanically coupled micromechanical analysis of shape memory alloy composites. J Mech 1:937
    29. Armstrong W, Kino H (1995) Martensitic transformations in a NiTi fiber reinforced 6061 aluminium matrix composite. J Intel Mater Syst Struct 6:809 CrossRef
    30. Boyd J, Lagoudas D (1996) A thermodynamical constitutive model for shape memory materials鈥擯art I: The monolithic shape memory alloy. Int J Plast 12(7):843 CrossRef
    31. Carvelli V, Taliercio A (1999) A micromechanical model for the analysis of unidirectional elastoplastic composites subjected to 3D stresses. Mech Res Commun 26(5):547 CrossRef
    32. Cherkaoui M, Sun Q, Song G (2000) MIcromechanics modeling of composite with ductile matrix and shape memory alloy reinforcement. Int J Solids Struct 37:1577 CrossRef
    33. Notta-Cuvier D, Lauro F, Bennani B, Balieu R (2013) An efficient modelling of inelastic composites with misaligned short fibres. Int J Solids Struct 50:2857 CrossRef
    34. Freed Y, Aboudi J (2008) Micromechanical investigation of plasticity-damage coupling of concrete reinforced by shape memory alloy fibers. Smart Mater Struct 17:1 CrossRef
    35. Gilat R, Aboudi J (2004) Dynamic response of active composite plates: shape memory fibers in polymeric/metallic matrices. Int J Solids Struct 41:5717 CrossRef
    36. Kawai M, Ogawa H, Baburaj V, Koga T (1999) Micromechanical analysis for hysteretic behavior of unidirectional TiNi SMA fiber composites. J Intel Mater Syst Struct 10:14
    37. Klinkel S, Sansour C, Wagner W (2005) An anisotropic fibre-matrix material model at finite elastic鈥損lastic strains. Comput Mech 35:409 CrossRef
    38. Marfia S (2005) Micro-macro analysis of shape memory alloy composites. Int J Solids Struct 42:3677 CrossRef
    39. Song G, Cherkaoui M, Sun Q (1999) Role of microstructure in the thermomechanical behavior of SMA composites. J Eng Mater-T ASME 121(1):86 CrossRef
    40. Gebbeken N (1996) Zur Untersuchung des linearen Tragverhaltens von Verbundkonstruktionen mittels numerischer Methoden. Technical Report 96/1, Universit盲t der Bundeswehr M眉nchen
    41. Huber F (2006) Nichtlineare dreidimensionale Modellierung von Beton- und Stahlbetontragwerken. Ph.D. thesis, Universit盲t Stuttgart
    42. Miehe C, Schr枚der J, Schotte J (1999) Computational homogenization analysis in finite plasticity simulation of texture development in polycrystalline materials. Comput Method Appl Mech 171(3鈥?):387 CrossRef
    43. Geers M, Coenen E, Kouznetsova V (2007) Multi-scale computational homogenization of structured thin sheets. Model Simul Mater Sci 15(4):S393 CrossRef
    44. Oskay C, Fish J (2007) Eigendeformation-based reduced order homogenization for failure analysis of heterogeneous materials. Comput Method Appl Mech 196(7):1216 CrossRef
    45. Gruttmann F, Wagner W (2013) A coupled two-scale shell model with applications to layered structures. Int J Numer Method Eng 94(13):1233 CrossRef
    46. Simo J, Hughes T (2000) Computational inelasticity, interdisciplinary applied mathematics mechanics and materials, vol 7. Springer, New York
    47. Neunzert H, Blickensd枚rfer-Ehlers A (1998) Analysis, 3rd edn. Springer, Berlin
    48. Juh谩sz L (2004) Herleitung eines konstitutiven Modells f眉r Formged盲chtnislegierungen. Ph.D. thesis, Universit盲t Karlsruhe
    49. Zohdi T, Wriggers P (2005) Introduction To computational micromechanics. Lecture Notes in applied and computational mechanics. Springer Verlag, Berlin Heidelberg CrossRef
    50. Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11(5):357 CrossRef
    51. Gross D, Seelig T (2001) Bruchmechanik: Mit einer Einf眉hrung in die Mikromechanik. Springer, Berlin. URL http://www.books.google.de/books?id=ySI3E0YoEMQC
  • 刊物类别:Engineering
  • 刊物主题:Theoretical and Applied Mechanics
    Numerical and Computational Methods in Engineering
    Computational Science and Engineering
    Mechanics, Fluids and Thermodynamics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0924
文摘
This contribution deals with a computational model for a shape memory alloy fiber composite. Three main topics have been considered within the presented model. First, a 1D fiber model is derived which accounts for all relevant nonlinear material phenomena of shape memory alloys. These are pseudoelasticity in the high temperature range and pseudoplasticity in the low temperature range. The latter is closely connected to the shape memory effect. The constrained and two-way shape memory effect are captured as well. Second, the shape memory fiber model is implemented into the finite element method. Two different structural elements are derived which lead to two different discretization schemes. A non-conform meshing concept and a conform meshing concept are presented. Randomly oriented and distributed fibers are considered. Both schemes are compared within the paper. Third, an \(\hbox {FE}^{2}\) ansatz is presented. The computational homogenization process makes the detailed description of the complicated fiber-structure on macro-level dispensable. The micro-structure is considered in a representative volume element. It captures the main characteristics of the multi-functional composite. Finally, numerical examples present the capability of the formulation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700